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Abstract

The increasingly rapid emergence of high dimensional data, where the number of

variables p may be larger than the sample size n, has necessitated the development

of new statistical methodologies. LASSO and variants of LASSO are proposed and

have been the most popular estimators for the high dimensional regression models.

However, not much work has focused on analyzing and summarizing the information

contained in the entire solution path of the LASSO. This dissertation consists of three

research projects that propose and extend the Leave-One-Covariate-Out(LOCO) so-

lution path statistic to regression and graphical models.

In the first chapter, we propose a new measure of variable importance in high-

dimensional regression based on the change in the LASSO solution path when one

covariate is left out. For low-dimensional linear models, our method can achieve

higher power than the T-test. In the high-dimensional setting, our proposed solution

path based test achieves greater power than some other recently developed high-

dimensional inference methods.

In the second and third chapter, we extends the LOCO path statistic developed for

linear regression with a continuous response to generalized linear models and graphical

models. Our procedure allows for the construction of P-values for testing hypothesis

about single regression coefficients as well as hypotheses involving multiple regression

coefficients and variable screening for graphical models. In the high-dimensional

setting, our proposed solution path based test achieves greater power than some

other recently developed high-dimensional inference and screening methods.
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Chapter 1

High-Dimensional Inference based on the

Leave-One-Covariate-Out LASSO path

1.1 Introduction

We consider the linear regression model

Y = Xβ + ε, (1.1)

where X = [XT
1 , X

T
2 , . . . , X

T
n ]T with Xi ∈ Rp, Y ∈ Rn, ε ∼ N (0, σ2

ε In), where In is

the n× n identity matrix, and β ∈ Rp is a vector of unknown regression coefficients.

We consider both the cases p > n and p ≤ n.

We propose a measure of variable importance based on the change in the LASSO

solution path due to removing a covariate from the model. Regarding the LASSO

solution path

β̂ := β̂(λ) = argmin
β∈Rp

(||Y −Xβ||22 + λ||β||1), λ > 0 (1.2)

as a function of λ taking values in (0,∞) and returning values β̂(λ) in Rp, we propose

to measure the importance of covariate Xj, for any j ∈ {1, . . . , p}, by comparing the

path β̂ to the path

β̂(−j) := β̂(−j)(λ) = argmin
β∈Rp,βj=0

(||Y −Xβ||22 + λ||β||1), λ > 0, (1.3)

which is the LASSO solution path when the covariate Xj is removed from the model.

Herein, for a vector v = (v1, . . . , vK)T , ||v||22 = ∑K
k=1 v

2
k and ||v||1 = ∑K

k=1 |vk|. We

will refer to β̂(−j) as the leave-one-covariate-out solution path, or the LOCO path of

1
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the LASSO. It is important to note that for a given j, β̂(−j)
j (λ) = 0 for all λ. We

reason that if covariate Xj is important, its importance will be reflected in a large

difference between the paths β̂ and β̂(−j), whereas if it is not important, the difference

between the paths β̂ and β̂(−j) will be small.

The measure of variable importance we propose, which we shall call the LOCO

path statistic, can be used for variable selection and variable screening; moreover,

we suggest that it can be used as a test statistic for testing the hypotheses H0:

βj = 0 versus H1: βj 6= 0. We also use the LOCO solution path idea to construct

a test statistic for testing more complicated hypotheses involving several coefficients,

specifically hypotheses of the form

H0: βj = βj,0, for all j ∈ A versus H1: βj 6= βj,0 for some j ∈ A,

for some {βj,0, j ∈ A}, where A ⊂ {1, . . . , p}. We propose a bootstrap procedure to

calibrate the rejection regions of hypothesis tests based on the LOCO solution path.

We now place our ideas in the literature: the LASSO proposed by Tibshirani,

1996 has been one of the most popular estimators for the linear regression model of

(1.1), particularly in the p > n case. It belongs to a class of penalized estimators

designed to promote sparsity among the estimated regression coefficients in order to

achieve simultaneous variable selection and estimation. Implementing the LASSO

requires choosing a value, usually via cross validation, of the tuning parameter λ,

which governs the sparsity and shrinkage towards zero of the estimated regression

coefficients. Although the LASSO is a powerful tool, the LASSO estimator has a

very complicated sampling distribution, so that statistical inference based on LASSO

estimators is problematic.

Other estimators for model (1.1) with p > n have been proposed which have,

under some conditions, limiting normal distributions, such as the desparsified LASSO

estimator, which was proposed by Geer et al., 2014 and Zhang and Zhang, 2014 as

well as the estimator introduced by Javanmard and Montanari, 2014; these methods

2
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enable inference, but a downside is that they require the choice of an additional tuning

parameter and inferences may be very sensitive to the choice of tuning parameter.

The adaptive LASSO estimator proposed by Zou, 2006, under some conditions and

with tuning parameters appropriately chosen, has a limiting normal distribution (for

non-zero coefficients), though convergence seems to be slow; a bootstrap procedure

has been shown to be consistent for the adaptive LASSO in Das et al., 2019. A

bootstrap method for the LASSO is proposed in Chatterjee and Lahiri, 2011and

Chatterjee, Lahiri, et al., 2013, which is consistent for a modified LASSO and adaptive

LASSO estimator. A sequential significance testing procedure for variables entering

the model along the LASSO solution path was proposed in Lockhart et al., 2014.

Inferential methods for the high-dimensional linear model based on sample splitting,

for example in Wasserman and Roeder, 2009 and Meinshausen et al., 2009, have also

been proposed and implemented with success.

As variable selection methods, sure independence screening (SIS) and iterative

sure independence screening (ISIS) are proposed by Fan and Lv, 2008 for ultra-

high dimensional linear regression. Ultra-high dimensional regression focuses on the

settings with log(p) = O(nζ). It has been extended to GLM Fan, Song, et al., 2010,

GAM Fan et al., 2011 and multivariate regression models Ke et al., 2014. Although

these methods enjoy the sure screening property Fan and Lv, 2008, SIS only considers

the marginal contribution of each variable to the response.

To our knowledge, however, not much work has focused on analyzing and sum-

marizing the information contained in the entire solution path of the LASSO with

respect to the importance of each variable. We propose to consider the LASSO solu-

tion path in its entirety, and then measure how it changes when we leave one covariate

out.

The idea of leave-one-covariate-out (LOCO) inference is not new. The following

LOCO-based procedure for measuring variable importance is described in Lei et al.,

3
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2018: Let µ̂ be an estimate of E(Y |X) based on some training data (X, Y ), and let

µ̂(−j) be the same estimator based on the training data (X(−j), Y ), where X(−j) is the

matrix X with column j removed. Then we measure the excess prediction error on

new data (Xnew, Ynew) as

|Ynew − µ̂(−j)(Xnew)| − |Ynew − µ̂(Xnew)|,

where the “new” data can come from crossvalidation testing sets or from a separate

testing data set. The larger the above quantity, the greater importance we assign to

covariate Xj, as it measures how much worse our predictions become due to removing

covariate Xj.

Permutation feature importance, introduced by Breiman, 2001 and generalized

by Fisher et al., 2018, is a similar to the LOCO approach to measuring variable

importance; instead of removing covariate Xj from the model, the observed values of

covariate Xj are randomly permuted. By this permutation, the association between

covariate Xj and the response is broken and the resulting model is different from the

one fit to the original data.

What we propose falls into the framework of LOCO variable importance and

inference; however, rather than measuring the change in the prediction error due to

removing a covariate, we consider the change in the LASSO solution path.

This paper is organized as follows: Section 1.2 defines our measure of variable

importance based on the change in the LASSO solution path due to the removal

of a covariate and discusses its use as a variable selection and variable screening

tool. Section 1.3 explains how we propose to use the LOCO solution path idea to

construct test statistics for testing hypotheses about the regression coefficients. We

also describe a bootstrap procedure for estimating the null distribution of our LOCO

path-based test statistics. Section 1.4 presents simulation results and Section 1.5

illustrates the method on a real data set. Section 1.6 provides additional discussion.

4
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1.2 The leave-one-covariate-out path statistic

To formulate our metric for the difference between the LASSO solution path β̂ defined

in (2.2) and the LOCO solution path of the LASSO defined in (2.3), we define a

quantity for functions taking values in (0,∞) and returning values in Rp. Firstly, for

any function g taking values in (0,∞) and returning values in R, let

‖g‖s =


(
∫∞

0 |g(λ)|sdλ)1/s, 0 < s <∞

sup
λ>0
|g(λ)|, s =∞.

Secondly, for a vector x ∈ Rp, let

||x||t =


(∑p

j=1 |xj|t)1/t, 0 < t <∞

max
1≤j≤p

|xj|, t =∞.

Now, for a function f taking values in (0,∞) and returning values in Rp such that

f(λ) = (f1(λ), . . . , fp(λ))T , define the quantity ‖f‖s,t as

‖f‖s,t = ‖(‖f1‖s, . . . , ‖fp‖s)T‖t.

Having defined a quantity for functions taking values in (0,∞) and returning values

in Rp, we define the LOCO path statistic for covariate Xj as

Tj(s, t) = ||β̂ − β̂(−j)||s,t,

which measures the change in the LASSO solution path due to removing covariate

Xj from the model.

In practice, it is convenient to use s = t; if s = t = q, we have

Tj(q, q) =



( p∑
k=1

∫ ∞
0
|β̂k(λ)− β̂(−j)

k (λ)|qdλ
) 1

q

q <∞

max
1≤k≤p

sup
λ>0
|β̂k(λ)− β̂(−j)

k (λ)| q =∞.

We recommend using q = 1 or q = 2 in practice. We have found that under q = ∞

our hypothesis test tend to have lower power, so we do not recommend this setting.

We illustrate this in the simulation section.

5
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We posit that the quantity Tj(s, t) will be large if βj 6= 0 and small if βj = 0,

for j = 1, . . . , p, so that Tj(s, t) may serve as a measure of variable importance for

covariate Xj. Since the LASSO solution path is piecewise linear, we can calculate

Tj(s, t) exactly. More details about the calculation can be found in the section S.1 of

the Supplementary Material.

The LOCO path statistic as a measure of variable importance

For the sake of illustration, let us consider one special case of Tj(s, t), with s = t = 1.

We have

Tj(1, 1) = ||β̂ − β̂(−j)||1,1 =
p∑

k=1

∫ ∞
0
|β̂k(λ)− β̂(−j)

k (λ)|dλ,

which is equal to the sum of all the areas under the curves |β̂k(·)− β̂(−j)
k (·)|, k =

1, . . . , p. We depict this for the following simple example: We generate one dataset

from the linear regression model (1.1) with n = 100, p = 4 and β = (1, 1, 0, 0)T , and

compute the test statistics T1(1, 1) and T3(1, 1). The left and right panels of Figure

1.1 show the original LASSO solution path as well as the solution path after removing

the first and third covariates, respectively, from the model. In each panel, the sum

of the areas of the shaded regions is the value of the test statistic.

β1=1, T1(1, 1)= 4.56

λ

N
A

β3=0, T3(1, 1)= 0.18

λ

Figure 1.1: Shaded areas show how Tj(1, 1) measures the change in LASSO path.
Black solid line depicts the solution path before removal. Black dotted line depicts the
solution path of the covariates being removed. Red dashed line depicts the solution
path after removal. Left: T1(1, 1). Right: T3(1, 1).
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We propose to summarize the importance of the variables measured by the LOCO

path statistic in the following way. After standardizing the values of Tj(s, t), j =

1, . . . , p, so that they sum to one, for example by defining

T j(s, t) = Tj(s, t)
( p∑
k=1

Tk(s, t)
)−1

, j = 1, . . . , p,

we can make a plot such as the one in Figure 1.2, which shows the values of

T 1(1, 1), . . . , T 12(1, 1), expressed as percentages. This is based on a single dataset

simulated from (1.1) with n = 100, p = 12, β = (1, 1, 1, 0, . . . , 0)T , for the sake

of illustration. The first three covariates are seen to have the highest importance

according to the LOCO path statistic.

Furthermore, we consider attaching to the variable importance a measure of un-

certainty. The LOCO path β̂(−j)
k (λ) could be fitted by permuting variable j in X. By

permuting variable j in X, we break the association between Xj and Y , which has an

effect similar to removing variable j. By permuting the observed values of covariate

j multiple times we can obtain an interval for the variable importance. Figure 1.2

also shows the permutation interval calculated for the importance measure of each

variable.

40.04%

27.22%

31.28%

0.04% 0.07% 0.19% 0.35% 0.19% 0.07% 0.16% 0.33% 0.05%

0.0
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Figure 1.2: Variable importance for all variables based on the LOCO path statistic.
The error bar is our permutation interval. The variable importance is also shown as
percentages on top of the error bar.
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Variable screening in ultra-high dimensional settings

The so-called ultra-high dimensional setting was discussed in Fan and Lv, 2008, where

the dimensionality p grows exponentially (log(p) = O(nζ)) as n grows. For ultra-high

dimensional problems, preliminary variable screening is often done to reduce the

dimension of the data.

Our method naturally adapts to ultra-high dimensional settings. By calculating

how the removal of each variable will alter the LASSO solution path, we have a

simple way to screen out variables which are likely to be irrelevant. Our method

uses the information contained in the LASSO solution path, which utilizes both joint

and marginal information. One interesting result of LASSO in the high-dimensional

setting is that some variables never enter the model. If we take a closer look at the

solution path of such variables, they are equal to 0 for all values of λ. If we were

to use cross validation to select the LASSO tuning parameter and obtain the final

selection results, these variables would never be selected. This means we can safely

screen out these variables at the beginning.

Based on this intuition, we suggest the following screening procedure: Compute

the solution path with all variables in the model. Then remove one variable at a

time and compute the LOCO solution path; compute the values T1(s, t), . . . , Tp(s, t),

which compare the solution path based on the full set of covariates to the LOCO

solution paths. Then screen out variables for which Tj(s, t) ≤ ε, where ε is a user-

specified threshold. Choosing ε = 0 discards only those variables which never enter

the solution path. We can also rank Tj(s, t) and only select the top K variables,

where we might choose K to be n− 1 and n is the sample size.
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1.3 Hypothesis testing using the LOCO path idea

We now consider using the LOCO path idea to test hypotheses of the form

H0: βj = βj,0 for all j ∈ A versus H1: βj 6= βj,0 for some j ∈ A, (1.4)

for some {βj,0, j ∈ A}, where A ⊂ {1, . . . , p}. We first calculate the LASSO solution

path with all variables included. Next, we compute the solution path subject to the

constraint specified by the null hypothesis, which is given by

β̂0 := β̂0(λ) = argmin
β∈Rp,βj=0∈A

(||(Y −XAβ0,A)−Xβ||22 + λ||β||1), (1.5)

where β0,A = (βj,0, j ∈ A)T and XA is the matrix constructed out of the columns of

X with indices in A.

We then suggest as a test statistic for testing H0 versus H1 the quantity

T0(s, t) = ‖β̂ − β̂0‖s,t, (1.6)

which compares the solution paths β̂0 and β̂. For testing the hypotheses

H0: βj = 0 versus H1: βj 6= 0,

for some j ∈ {1, . . . , p}, we have β̂0 = β̂(−j), so that the test statistic T0(s, t) is equal

to the LOCO path variable importance statistic Tj(s, t) = ‖β̂ − β̂(−j)‖s,t.

A bootstrap estimator of the null distribution

In order to test the hypotheses in (2.5) using the test statistic T0(s, t) in (2.7), we

need to know the distribution of T0(s, t) under H0. We propose estimating this null

distribution using a residual bootstrap procedure.

In order to obtain residuals from which to resample, we propose obtaining an

initial estimator β̃, which we will discuss at the end of this section, of the vector β

from which we can obtain residuals

ε̃ = Y −Xβ̃.
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Let Ỹ ∗ be the n × 1 random vector with entries given by Ỹ ∗i = XT
i β̃ + ε̃∗i , for i =

1, . . . , n, where ε∗1, . . . , ε∗n are sampled with replacement from the entries of the residual

vector ε̃ = (ε̃1, . . . , ε̃n)T .

For testing the hypotheses in (2.5), the bootstrap versions β̂∗ and β̂∗0 of β̂ and β̂0

are constructed as

β̂∗ := β̂∗(λ) = argmin
β∈Rp

(||(Ỹ ∗ −XA(β̃A + β0,A))−Xβ||22 + λ||β||1) (1.7)

and

β̂∗0 := β̂∗0(λ) = argmin
β∈Rp,βj=0,j∈A

(||(Ỹ ∗ −XA(β̃A + β0,A))−Xβ||22 + λ||β||1), (1.8)

respectively. Then the bootstrap version of T0(s, t) = ‖β̂ − β̂0‖s,t is given by

T ∗0 (s, t) = ‖β̂∗ − β̂∗0‖s,t.

Given a large number B of Monte-Carlo replicates of T ∗0 (s, t), denoted by, say,

T
∗,(1)
0 (s, t) < · · · < T

∗,(B)
0 (s, t), when ordered, our bootstrap-based test of H0 at

significance level α has decision rule

Reject H0 if and only if T0(s, t) > T
∗,(bB(1−α)c)
0 ,

where T ∗,(bB(1−α)c)
0 is the Monte-Carlo approximation to the bootstrap estimator of

the upper α-quantile of the null distribution of T0(s, t), and b·c is the floor function.

We could also obtain a bootstrapped P-value by

B−1
B∑
i=1

I{T ∗,(i)0 (s, t) > T0(s, t)},

where I(·) is the indicator function.

For the simpler hypotheses H0: βj = 0 versus H1: βj 6= 0 for any j = 1, . . . , p,

we need to construct a bootstrap version of the LOCO path statistic Tj(s, t) = ‖β̂ −

β̂(−j)‖s,t.
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The bootstrap versions of β̂ and β̂(−j), following (2.9) and (2.10), are

β̂∗ := β̂∗(λ) = argmin
β∈Rp

(||(Ỹ ∗ −Xjβ̃j)−Xβ||22 + λ||β||1)

and

β̂∗(−j) := β̂∗(−j)(λ) = argmin
β∈Rp,βj=0

(||(Ỹ ∗ −Xjβ̃j)−Xβ||22 + λ||β||1),

respectively, where Xj is column j of the matrix X. Then the bootstrap version of

Tj(s, t) is given by

T ∗j (s, t) = ‖β̂∗ − β̂∗(−j)‖s,t.

Regarding the choice of the initial estimator β̃ of β, which is used only to obtain

residuals suitable for resampling, we suggest, when p ≥ n, the adaptive LASSO

estimator

β̂Ada = argmin
β∈Rp

(||Y −Xβ||22 + γ
p∑
j=1

ŵj|βj|),

where the tuning parameter γ is selected via 10-fold cross validation and the weights

ŵ1, . . . , ŵp are given by

ŵj = 1/|β̂Lj |, j = 1, . . . , p,

where β̂L1 , . . . , β̂Lp are the LASSO estimates of β1, . . . , βp from (2.2) under the 10-

fold cross validation choice of λ. This is the initial estimator we have used in our

simulation studies, and it appears to work well. For the p < n case the least-squares

estimator could be used, though even in the low-dimensional case, we still recommend

using the adaptive LASSO estimator when p is close to n.

Justification of the bootstrap for a simple case

Finding the sampling distribution of T0(s, t) in general is a very hard problem which

we do not attempt to solve. However, we do provide in this section an argument for

why the bootstrap method described in the previous section will work in a simple

case: the low-dimensional case, with p < n, with a design matrix having orthonormal
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columns. We focus on the null distribution of the test statistic Tj(1, 1) = ‖β̂−β̂(−j)‖1,1

for testing H0: βj = 0 versus H1: βj 6= 0 for some j ∈ {1, . . . , p}.

In low-dimension, if the design matrix X satisfies XTX = Ip, where In is the n×n

identity matrix, the LASSO solution path β̂ has entries given by

β̂k(λ) = Sλ(β̂LS
k ), k = 1, . . . , p,

where β̂LS = (XTX)−1XTY = XTY is the least-squares estimator of β and Sλ(·) is

the soft-thresholding operator defined by

Sλ(x) =



x− λ, x > λ

0, −λ < x < λ

x+ λ, x < −λ

for λ ≥ 0. The solution path β̂(−j) has entries given by

β̂
(−j)
k (λ) =


0 k = j

Sλ(β̂LS
k ) k 6= j

for k = 1, . . . , p.

In this case, the LOCO path statistic Tj(1, 1) is given by

Tj(1, 1) = ‖β̂ − β̂(−j)‖1,1 =
p∑

k=1

∫ ∞
0
|β̂k(λ)− β̂(−j)

k (λ)|dλ

=
∫ |β̂LS

j |

0
(|β̂LS

j | − λ)dλ = 1
2 |β̂

LS
j |2.

So, our test statistic is merely a 1-to-1 mapping of the least-squares estimator. Hence,

under H0: βj = 0,

nTj(1, 1) = n

2 |β̂
LS
j |2 ∼ W

σ2

2 ,

where W ∼ χ2
1.

Now consider the bootstrap version T ∗j (1, 1) of Tj(1, 1) in the p < n and orthonor-

mal design case; we assume that the least-squares estimator is used as the initial
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estimator from which the residuals are obtained. Let β̂∗,LS = XT Ỹ ∗ be the bootstrap

version of β̂LS. Now, we can write the entries of

β̂∗(λ) = argmin
β∈Rp

(||(Ỹ ∗ −Xjβ̂
LS
j )−Xβ||22 + λ||β||1)

as

β̂∗k(λ) =


Sλ(β̂∗,LS

k − β̂LS
k ), k = j

Sλ(β̂∗,LS
k ), k 6= j

for k = 1, . . . , p,

using the fact that

XT
k (Ỹ ∗ −Xjβ̂

LS
j ) =


β̂∗,LS
k − β̂LS

k , k = j

β̂∗,LS
k k 6= j,

for k = 1, . . . , p.

In addition, we can write the entries of

β̂∗(−j)(λ) = argmin
β∈Rp,βj=0

(||(Ỹ ∗ −Xjβ̂
LS
j )−Xβ||22 + λ||β||1)

as

β̂
∗(−j)
k (λ) =


0, k = j

Sλ(β̂∗,LS
k ), k 6= j

for k = 1, . . . , p.

So we have

T ∗j (1, 1) = ‖β̂∗ − β̂∗(−j)‖1,1 =
p∑

k=1

∫ ∞
0
|β̂∗(−j)k (λ)− β̂∗k(λ)|dλ

=
∫ |β̂∗,LS

k
−β̂LS

k |

0
(|β̂∗,LS

k − β̂LS
k | − λ)dλ = 1

2 |β̂
∗,LS
j − β̂LS

j |2.

It can be established that

sup
x∈R

∣∣∣∣P∗ (n2 |β̂∗,LS
j − β̂LS

j |2 < x
)
− P

(
n

2 |β̂
LS
j − βj|2 < x

)∣∣∣∣ p−→ 0,

as n→∞, where P∗ denotes probability conditional on the observed data Mammen,

2012. This means our bootstrap works in the low-dimensional orthonormal design

case. In the high-dimensional case, or even in the low-dimensional case without the

assumption of an orthogonal design, (2.2) does not admit a simple solution, and

13
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in this setting the derivation of the distribution of the test statistic would be very

difficult. Our simulation studies, however, suggest that our bootstrap procedure can

consistently estimate the null distributions of the test statistics in the non-orthogonal

design and high-dimensional cases.

1.4 Simulation studies

We now study via simulation the effectiveness of the LOCO path statistic as a variable

screening tool as well as the properties of our proposed LOCO-path-based tests of

hypotheses which use the residual bootstrap to estimate the null distributions of the

test statistics. An R package LOCOpath that implements all of our proposed methods

is publicly available at http://github.com/devcao/LOCOpath. We first present the

variable screening results.

Variable screening

To assess the performance of the LOCO-path-based variable screening procedure

described in Section 1.2, we follow the simulation examples in Fan and Lv, 2008,

generating data from the model

Y = βX1 + βX2 + βX3 + ε,

where ε ∼ N (0, 1), with a total of p predictors X1, . . . , Xp in the model. The rows of

the design matrix are generated as independent multivariate normal random vectors

with covariance matrix Σ = (ρ|i−j|)1≤i,j≤p, where ρ = 0, 0.1, 0.5 and 0.9. Models with

β = 1, 2, 3, p = 100, n = 20, and p = 1000, n = 50 are considered. We simulated 200

data sets for each model. To compare with SIS and ISIS, we utilized the R package

SIS Saldana and Feng, 2018. We simulated 200 data sets and for each model we

calculate Tj(1, 1) and Tj(2, 2) for j = 1, 2, . . . , p and select the top n − 1 covariates,

selecting the same number of covariates with SIS and ISIS in order to make a fair
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comparison. For our method, we utilized the R package lars Hastie and Efron, 2013

with LASSO modification to calculate our test statistic.

In Table 2.1 we show the proportion of times that the true model is contained

in the set of selected covariates for our method and for the SIS and ISIS variable

screening methods. In most cases, the model selected by our LOCO-path-based

method contains the true model with greater frequency than that of the SIS and

ISIS methods. We note that our method achieves this without any need for selecting

tuning parameters, whereas the ISIS methods involves iterated LASSO fits for which

the strength of the sparsity penalty must be chosen.

Table 1.1: Proportion of times SIS, ISIS and our method selected a set of covariates
containing {X1, X2, X3}.

Setting β Tj(1, 1) Tj(2, 2) SIS ISIS
p = 1000, n = 50,Σ = Ip 1 0.995 0.995 0.900 0.945

2 1.000 1.000 0.945 1.000
3 1.000 1.000 0.990 1.000

p = 1000, n = 50,Σ = (0.1|i−j|)1≤i,j≤p 1 0.990 0.990 0.960 0.960
2 1.000 1.000 0.995 1.000
3 1.000 1.000 0.990 1.000

p = 1000, n = 50,Σ = (0.5|i−j|)1≤i,j≤p 1 1.000 1.000 1.000 0.890
2 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000

p = 1000, n = 50,Σ = (0.9|i−j|)1≤i,j≤p 1 0.980 0.975 1.000 0.535
2 1.000 1.000 1.000 0.825
3 1.000 1.000 1.000 0.965

p = 100, n = 20,Σ = Ip 1 0.630 0.630 0.560 0.440
2 0.915 0.920 0.700 0.860
3 0.955 0.955 0.710 0.905

p = 100, n = 20,Σ = (0.1|i−j|)1≤i,j≤p 1 0.705 0.700 0.685 0.495
2 0.960 0.965 0.810 0.890
3 0.970 0.970 0.845 0.970

p = 100, n = 20,Σ = (0.5|i−j|)1≤i,j≤p 1 0.940 0.940 0.945 0.505
2 1.000 1.000 0.990 0.940
3 1.000 1.000 0.995 0.975

p = 100, n = 20,Σ = (0.9|i−j|)1≤i,j≤p 1 0.745 0.740 1.000 0.465
2 0.995 0.995 1.000 0.635
3 1.000 1.000 1.000 0.805
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Study of power and size of LOCO path tests of hypotheses

Test involving a single coefficient

We first study the size and power of the LOCO path test for testing the hypotheses

H0: βj = 0 versus H1: βj 6= 0 for some j ∈ {1, . . . , p}, where the rejection region of

the test is calibrated using the residual bootstrap procedure described in Section 1.3.

We consider the test statistics Tj(1, 1), Tj(2, 2), and Tj(∞,∞).

In high-dimensional (p ≥ n) settings, we compare the empirical size and power

of our test based on these statistics with the test based on the desparsified LASSO

estimator of Geer et al., 2014. We use the R package hdi Dezeure et al., 2015a to

obtain the P-value based on the desparsified LASSO estimator using default settings

Dezeure et al., 2015b. And we utilize the R package lars Hastie and Efron, 2013 with

lasso modification to implement our method. In low-dimensional (p < n) settings,

we compare the performance of our tests to that of the classical t-test.

We generate data according to the model

Y = Xβ + ε,

where ε ∼ N (0, In) and consider three cases with n = 100, p = 80 and p = 1000. For

p = 1000, we set β = (β1, . . . , βp)T such that β2 = · · · = β10 = 1, β11 = · · · = β1000 =

0. For p = 80, we set β2 = β3 = 1, β4 = · · · = β80 = 0.

To simulate the power curve, we take different values of β1 ∈ {0/10, 1/10, . . . , 1}.

Each row of X is generated independently from the multivariate normal distribution

N (0,Σ), where we consider different choices of the p× p covariance matrix Σ.

For each choice of Σ and for each value of β1 ∈ {0/10, 1/10, . . . , 1}, we generate

N = 500 data sets and with each data set we test H0: β1 = 0 versus H1: β1 6= 0. For

each data set, we draw B = 500 bootstrap samples to estimate the null distribution.

We record the proportion of rejections of H0 at the α = 0.05 significance level.
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The empirical size of the simulation for H0: β1 = 0 under p = 1000, is given in

Table 1.2 under different choices of Σ. We also recorded the empirical size of the test

based on the desparsified LASSO estimator.

It is clear that our method nicely controlled the size under different choices of

Σ and different quantities T1(1, 1), T1(2, 2) and T1(∞,∞). The desparsified LASSO

does not control the size in many cases.

The empirical power curves of our test based on the LOCO path statistics T1(1, 1)

and T1(∞,∞) as well as of the test based on the desparsified LASSO under settings

n = 1000 and p = 80 over the values β1 ∈ {0/10, 1/10, . . . , 1} are depicted in Figures

1.3 and 1.4.

For most cases, T1(1, 1) have the highest power, while T1(∞,∞) loses a lot of

power under the correlated design. Under different designs, our method outperformed

desparsified LASSO using quantity T1(1, 1).

It is interesting to see that the desparsified LASSO appears to outperform our

method under the design Σ = (0.9|i−j|)1≤i,j≤p.

However, since its size is inflated in that case, we dismiss its power curve. Overall,

our methods achieves comparable or higher power, with size well-controlled, compared

to the desparsified LASSO method.

For the p = 80 case, we will compare our method to the classical t-test. From the

power curve in Figure 1.4, it is clear that our method achieved considerably greater

power than the t-test using both T1(1, 1) and T1(∞,∞), while controlling the size at

the same time.
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Table 1.2: Empirical size of the test under different Σ with n = 100, p = 1000.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.194 0.106 0.048 0.008

T1(2, 2) 0.186 0.110 0.056 0.016
T1(∞,∞) 0.230 0.140 0.078 0.012
Desparsified 0.138 0.058 0.030 0.010

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.226 0.110 0.054 0.018
T1(2, 2) 0.192 0.084 0.040 0.004
T1(∞,∞) 0.196 0.090 0.042 0.008
Desparsified 0.222 0.138 0.084 0.020

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.214 0.116 0.086 0.024
T1(2, 2) 0.238 0.124 0.076 0.030
T1(∞,∞) 0.264 0.160 0.086 0.018
Desparsified 0.274 0.162 0.102 0.054

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.194 0.126 0.064 0.018
T1(2, 2) 0.212 0.098 0.050 0.008
T1(∞,∞) 0.180 0.102 0.050 0.014
Desparsified 0.126 0.048 0.028 0.004

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.242 0.116 0.056 0.010
T1(2, 2) 0.182 0.086 0.040 0.010
T1(∞,∞) 0.198 0.084 0.050 0.008
Desparsified 0.070 0.022 0.010 0.002
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Figure 1.3: Empirical power for testing H0: β1 = 0 vs H1: β1 6= 0 under different
correlation design with n = 100, p = 1000 (from top to bottom: Σ = Ip, Σ =
(0.5|i−j|)1≤i,j≤p, and Σ = (0.9|i−j|)1≤i,j≤p).
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Figure 1.4: Empirical power for testing H0: β1 = 0 vs H1: β1 6= 0 under dif-
ferent correlation design with n = 100, p = 80 (from top to bottom: Σ = Ip,
Σ = (0.5|i−j|)1≤i,j≤p, and Σ = (0.9|i−j|)1≤i,j≤p).

Test involving multiple coefficients

For the simultaneous test, we consider similar settings. We generate data according

to the model
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Y = Xβ + ε,

where ε ∼ N (0, In) with n = 100 and β = (β1, . . . , βp)T . For p = 1000, we set

β2 = · · · = β10 = 1, β11 = · · · = β1000 = 0, and β1 ∈ {1, 11/10, . . . , 2}. For p = 80, we

set β2 = β3 = 1. Other settings remain the same as those under which we tested H0:

β1 = 0 versus H1: β1 6= 0.

For p = 1000, We will test

H0: β1 = 1, β11 = 0, β12 = 0 vs H1: β1 6= 1 or β11 6= 0 or β12 6= 0.

and for p = 80, we will test

H0: β1 = 1, β4 = 0, β5 = 0 vs H1: β1 6= 1 or β4 6= 0 or β5 6= 0.

For the p = 1000 case, Figure 1.5 shows the power curves of the tests under

different choices of Σ. The size is well controlled when H0 is true, and T1(1, 1)

achieved higher power than T1(∞,∞) as the correlation increases.

We only showed the power curve for our method, since the desparsified LASSO

estimators cannot do simultaneous test.

For the p = 80 case, we will compare our method to the classical F-test. From

the power curve in Figure 1.6, it is clear our method achieved considerably greater

power than the F-test both for T1(1, 1) and T1(∞,∞), while controlling the size at

the same time.

Overall, out method outperformed the F-test and works well for simultanoues test

in high-dimesional settings.
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Figure 1.5: Multiple testing empirical power under different correlation design with
n = 100, p = 1000 (from top to bottom: Σ = Ip, Σ = (0.5|i−j|)1≤i,j≤p, and Σ =
(0.9|i−j|)1≤i,j≤p).
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Figure 1.6: Multiple testing empirical power under different correlation design with
n = 100, p = 80 (from top to bottom: Σ = Ip, Σ = (0.5|i−j|)1≤i,j≤p, and Σ =
(0.9|i−j|)1≤i,j≤p).

1.5 Real data analysis

To provide a concrete example, we consider a dataset about riboflavin (vitamin B2)

production in Bacillus subtilis with 71 observations and 4088 variables Bühlmann
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et al., 2014, Dezeure et al., 2015b, Geer et al., 2014. The response variable measures

the logarithm of the riboflavin production rate and the predictors are logarithm of

the expression level of 4088 genes. We will model the data with a high-dimensional

linear model and carry out variable screening and inferences with the LOCO path

statistic.

We use T (1, 1) in this part and obtained bootstrap P-values for each gene after

variable screening. We screened in 342 genes with Tj(1, 1) > 0, j = 1, . . . , 4088. Based

on our bootstrapped P-values, our method found the following 9 significant genes at

0.05 significance level: ARGF_at, XHLA_at, XHLB_at, XTRA_at, YCKE_at,

YEBC_at, YOAB_at, YXLD_at and YYBG_at. Using the P-values based on the

desparsified LASSO results in 0 significant genes in Dezeure et al., 2015b. Figures 1.7

and 1.8 show the variable importance for a small portion of genes. We will see only a

few genes have large variable importance, while most genes have variable importance

less than 1%.

Table 1.3 shows all variables with importance 1%, where YXLD_at and YOAB_at

have the largest variable importance. Both genes are also tested significant using our

bootstrap procedure.

Table 1.3: The first 10 most important genes.

Genes Importance P-value
YOAB_at 10.7% 0.0084
YXLD_at 10.3% 0.0084
ARGF_at 5.8% 0.0168
LYSC_at 5.2% 0.0924
YEBC_at 5.2% 0.0616
XHLA_at 5.1% 0.0140
YCKE_at 5.1% 0.0084
YDDK_at 4.4% 0.0560

SPOVAA_at 2.9% 0.1482
XHLB_at 2.7% 0.0194
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Figure 1.7: The first 100 most important genes. The vertical dotted line marks the
variable importance at 1%.
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Figure 1.8: All genes with variable importance > 1%.
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1.6 Discussion

Our LOCO path statistic provides a new way to do variable screening and statistical

inference in linear models. For variable screening, our method does not require the

selection of tuning parameters and can achieve a greater probability of selecting a

set of covariates that contains the true model than both SIS and ISIS. For statistical

inference, our method provides reliable P-values in both high and low-dimensional

settings. Overall, the proposed bootstrap method controls the size and in some cases

achieves higher power than the desparsified LASSO of Geer et al., 2014. Moreover, our

method can be used to test hypothesis simultaneously involving multiple coefficients.

We believe the LOCO path idea can be readily extended to other settings.

Consider the regularization optimization problem

β̂ = β̂(λ) := argmin
β∈Rp

L(Y,Xβ) + λJ(β), (1.9)

where L(·) is a pre-defined loss function, λ > 0 is a tuning parameter which controls

the level of regularization, and J(·) is a penalty function on β. The solution path

β̂(λ) could be viewed as a 1-to-p mapping λ 7→ β̂(λ) taking values in (0,∞) and re-

turning values in Rp. Since our measure of feature importance and variable screening

procedure relies on the solution path only, we can easily adapt our method to (1.9),

which includes logistic regression, Poisson regression and Cox models. Appropriate

bootstrap methods for calibrating hypothesis tests would have to be worked out under

each setting, which we leave to future work.
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Chapter 2

A Generalized framework for High-Dimensional

Inference based on the

Leave-One-Covariate-Out regularization path

2.1 Introduction

The increasingly rapid emergence of high dimensional data, where the number of

variables p may be larger than the sample size n, has necessitated the development of

new statistical methodologies. In many areas, especially in genomics and biology, the

number of genes measured will be substantially larger than the number of samples.

Financial data, including data from high frequency trading, is also a source of high

dimensional data.

In the high-dimensional regime, classical regression methodologies that work un-

der lower-dimensional settings may fail. One way to handle high-dimensionality is

to impose some sparsity constraints on these classical techniques. The LASSO Tib-

shirani, 1997 is a typical example for the linear and generalized linear regression

problem, which can provide consistent estimators under some sparsity constraints.

Many other variants of LASSO Zou and Hastie, 2005, Zou, 2006 and Tibshirani,

Taylor, et al., 2011 have been proposed, which are suited to different problems under

various settings.

Although the LASSO and other sparse estimators have become very popular in

high-dimensional settings, it is hard to provide straightforward statistical inference
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procedures based on these estimators, since their distributions are very complicated.

The adaptive LASSO estimator Zou, 2006 has a limiting normal distribution under

some conditions with the appropriate choice of tuning parameter. The desparsified

LASSO, also has a limiting normal distribution Geer et al., 2014, Zhang and Cheng,

2017. However, these methods may be sensitive to choices of tuning parameters.

Other techniques, including sample splitting Wasserman and Roeder, 2009, Mein-

shausen et al., 2009, bootstrapping, Das et al., 2019, Chatterjee and Lahiri, 2011,

Chatterjee, Lahiri, et al., 2013 and sequential testing Lockhart et al., 2014 have also

been proposed and provide valid inference under some conditions.

The proposed Leave-One-Covariate-Out(LOCO) solution path statistic, which has

been shown to work well in the case of linear regression with a continuous response

variable, provides a novel way to measure variable importance in high-dimensional

settings. The LOCO path idea can also be used to construct a test statistic for testing

hypothesis about regression coefficients. By bootstrapping the null distribution of the

LOCO path statistic, it also provides a solid inference procedure for high-dimensional

linear regression. In this paper, we will extend the LOCO solution path statistic to

generalized linear models and to more general hypotheses. We would also consider

other solution paths other than LASSO solutions path.

We organize this paper as follows: Section 2.2 illustrates the LOCO path statis-

tic and Section 2.3 describes how we modify the LOCO path statistic for testing

different hypothesis under different models. Section 2.4 presents simulation results

and Sections 2.5 applies our method on different real data sets. Section 2.6 provides

additional discussion.

2.2 Methodology

We consider the generalized linear model(GLM) when the number of covariates is

large. Suppose we have data X = [XT
1 , X

T
2 , . . . , X

T
n ]T with Xi ∈ Rp, i = 1, . . . , n
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and Y ∈ Rn. The GLM assumes the distribution of Y belongs to the canonical-form

exponential family with the following density function

f(Y ) = exp
(
Y βTX− b

(
βTX

))
c(Y ).

where b(·) and c(·) are some known function We also focus on the canonical link

function for simplicity, so that

E(Yi|Xi = x) = b′((xTβ)) = µ(xTβ), (2.1)

where µ(·) is the inverse link function and β ∈ Rp is a vector of unknown regression

coefficients. We focus on the high-dimensional cases: p > n, but our method is also

applicable to the lower-dimensional case, p ≤ n.

The proposed Leave-One-Covariate-Out(LOCO) path statistic based on the LASSO

estimator is a way to measure variable importance for linear models by calculating

the change in the LASSO solution path due to removing one covariate from the

model. We extend the LOCO path statistic to generalized linear models. To assess

the importance of covariate j, we compare the complete solution path

β̂ := β̂(λ) = argmin
β∈Rp

L(Y,Xβ) + λJ(β), λ > 0 (2.2)

to the LOCO solution path, given by

β̂(−j) := β̂(−j)(λ) = argmin
β∈Rp,βj=0

L(Y,Xβ) + λJ(β), λ > 0, (2.3)

for each j ∈ {1, . . . , p}, where L(·) is a pre-defined loss function and J(·) is a penalty

function. If covariate Xj is important, its importance will be reflected in a large

difference between the paths β̂ and β̂(−j), whereas if it is not important, the difference

between the paths β̂ and β̂(−j) will be small.

The LASSO solution path β̂ can be viewed as a function taking values in (0,∞)

and returning values in Rp. As discussed in Chapter 1, the LOCO path statistic is

defined as

Tj(s, t) = ||β̂ − β̂(−j)||s,t, (2.4)
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where β̂, β̂(−j) is the full LASSO solution path and LOCO LASSO path, respectively.

And the quantity ‖ · ‖s,t is defined as follows.

For a function f : [0,∞) → Rp, such that f(x) = (f1(x), . . . , fp(x))T with fj :

[0,∞)→ R, for j = 1, . . . , p, we construct the following quantity. For all λ > 0, let

‖f‖q,q =


(∑p

k=1
∫∞

0 |fk(λ)|qdλ)1/q, 0 < q <∞

max
1≤k≤p

sup
λ>0
|fk(λ)|, q =∞

Then the LOCO path statistic for covariate j is Tj(s, t) = ‖β̂ − β̂(−j)‖s,t.

The LASSO solution path is piecewise linear for linear regression models hence

we can calculate Tj(s, t) exactly. Rosset and Zhu, 2007 proposed sufficient conditions

under which the LASSO solution path is piecewise linear: if L(·) is piecewise quadratic

and J(·) is piecewise linear. Hence, for common generalized linear models such as

logistic regression and Poisson regression, the solution path is not piecewise linear. If

we consider more general penalty functions J , such as elastic net or the group LASSO

penalty, the solution path is also not piecewise linear. Therefore, we need to calculate

Tj(q) in an approximate way by specifying a fine grid of λ.

Variable screening in ultra-high-dimensional settings

The ultra-high dimensional problem for linear regression is discussed by Fan and

Lv, 2008, where the dimensionality p grows exponentially (log(p) = O(nζ)) as n

grows. For such problems, preliminary variable screening is often done to reduce

the dimension of the data. Sure Independence Screening(SIS) and Iterative Sure

Independence Screening(ISIS) are proposed Fan and Lv, 2008. SIS and ISIS are

also extended to generalized linear models Fan and Lv, 2010 by ranking maximum

marginal likelihood estimators (MMLE).

Our method naturally adapts to ultra-high dimensional generalized linear models.

We suggest the following screening procedure: Compute the solution path with all

variables in the model. Then remove one variable at a time and compute the LOCO
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solution path; compute the values T1(s, t), . . . , Tp(s, t), which compare the solution

path based on the full set of covariates to the LOCO solution paths. Then screen

out variables for which Tj(s, t) ≤ ε, where ε is a user-specified threshold. Choosing

ε = 0 discards only those variables which never enter the solution path. We can also

rank Tj(s, t) and only select the top K variables, where we might choose K to be the

sample size n.

Computational details

For linear models with continuous response, the solution path is piecewise linear so

we can compute the entire LASSO solution path and calculate the exact value of

Tj(q). For most generalized linear models, the solution path is not piecewise linear,

we need to compute it over a grid of λ and approximate Tj(q).

To construct the grid of λ, we will make a sequence of λ decreasing from some pre-

determined λmax to λmin on the logarithm scale. For linear models, λmax is determined

by 1
n

maxi |XT
i Y |. And for logistic models, λmax = maxi 1

n
|((Y − Ȳ )(1− Ȳ ))TXi|. For

the choice of λmin, we will let λmin = ελmax. In practice, we usually choose ε = 0.001

and K = 100 and it usually gives very good approximations.

Hypothesis test

We now consider using the LOCO path idea to test hypotheses of the form

H0: βj = β0,j for all j ∈ A versus H1: βj 6= β0,j for some j ∈ A, (2.5)

for some {β0,j, j ∈ A}, whereA ⊂ {1, . . . , p}. We first calculate the solution path with

all variables included. Next, we compute the solution path subject to the constraint

specified by the null hypothesis, which is given by

β̂0 := β̂0(λ) = argmin
β∈Rp,βj=β0,j ,j∈A

L(Y,Xβ) + λJ(β). (2.6)
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We then suggest as a test statistic for testing H0 versus H1 the quantity

T0(s, t) = ‖β̂ − β̂0‖s,t, (2.7)

which compares the solution paths β̂0 and β̂. For testing the hypotheses

H0: βj = β0 versus H1: βj 6= β0,

for some j ∈ {1, . . . , p}, we have β̂0 = β̂(−j), so that the test statistic T0(s, t) is equal

to the LOCO path variable importance statistic Tj(s, t) = ‖β̂ − β̂(−j)‖s,t.

A bootstrap estimator of the null distribution

In order to test the hypotheses in (2.5) using the test statistic T0(s, t) in (2.7), we

need to estimate the distribution of T0(s, t) under H0. We propose estimating this

null distribution using a parametric bootstrap procedure.

In Chapter 1, the adaptive LASSO estimator is proposed as an initial estimator of

β. In this paper, we propose to use the adaptive elastic net as an initial estimator for

β̃, which is better suited to settings in which the columns of X are highly correlated.

β̂aenet = argmin
β∈Rp

L(Y,Xβ) + γ
p∑
j=1

ŵj

(1
2(1− α)β2

j + α|βj|
)
, (2.8)

where the tuning parameter γ is selected via 10-fold cross validation and the weights

ŵ1, . . . , ŵp are given by

ŵj = 1/|β̂Lj |, j = 1, . . . , p,

where β̂L1 , . . . , β̂Lp are the LASSO or elastic net estimates of β1, . . . , βp from (2.2)

under the 10-fold cross validation choice of λ. In our simulations studies, we mainly

used adaptive LASSO(α = 1) and it appears to work well. For the p < n case the

least-squares estimator could be used, though even in the lower dimensional case, we

still recommend using the adaptive LASSO or elastic net estimator when p is close

to n.
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After obtaining β̃, we set a working initial β̃H0 as β̃j,H0 = β0,j for j ∈ A and

β̃j,H0 = β̃Adaj for j ∈ Ac. The working initial β̃H0 will be used in the parametric

bootstrap procedure.

The bootstrapped Ỹ ∗ will be sampled via

Ỹ ∗i ∼ exp
(
Y β̃TH0Xi − b

(
β̃H0

TXi

))
c(Y ), i = 1, . . . , n,

where Ỹ ∗i is the i-th entry of the n× 1 vector Ỹ ∗.

For testing the hypotheses in (2.5), the bootstrap versions β̂∗ and β̂∗0 of β̂ and β̂0

are constructed as

β̂∗ := β̂∗(λ) = argmin
β∈Rp

L(Ỹ ∗,Xβ) + λJ(β), (2.9)

and

β̂∗0 := β̂∗0(λ) = argmin
β∈Rp,βj=β0,j ,j∈A

L(Ỹ ∗,Xβ) + λJ(β) (2.10)

respectively. Then the bootstrap version of T0(s, t) = ‖β̂ − β̂0‖s,t is given by

T ∗0 (s, t) = ‖β̂∗ − β̂∗0‖s,t.

Given a large number B of Monte-Carlo replicates of T ∗0 (s, t), denoted by, say,

T
∗,(1)
0 (s, t) < · · · < T

∗,(B)
0 (s, t), when ordered, our bootstrap-based test of H0 at

significance level α has decision rule

Reject H0 if and only if T0(s, t) > T
∗,(bB(1−α)c)
0 ,

where T ∗,(bB(1−α)c)
0 is the Monte-Carlo approximation to the bootstrap estimator of

the upper α-quantile of the null distribution of T0(s, t), and b·c is the floor function.

We could also obtain a bootstrapped P-value as

B−1
B∑
i=1

I
{
T
∗,(i)
0 (s, t) > T0(s, t)

}
,

where I(·) is the indicator function.
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Some theoretical justification

Now we will establish some theoretical results to justify the effectiveness of our

method. Consider for linear regression model

Y = Xβ + ε,

where ε ∼ N (0, σ2) with sample size n and number of covariates p. We first start

with a special case with orthogonal design n−1XTX = I. In that case, the LASSO

estimator can be solved analytically:

β̂j(λ) =


zj − λ, if zj > λ

0, if |zj| ≤ λ

zj + λ, if zj < −λ

,

where zj is the OLS estimator, and zj ∼ N (βj, σ2/n).

Hence we can derive the sampling distribution of β̂j(λ) for fixed λ as follows.

P(β̂j(λ) ≤ x) =


Φ(x+λ−βj

σ/
√
n

), if x > 0

Φ( λ−βj

σ/
√
n
)− Φ(−λ−βj

σ/
√
n

), if x = 0

Φ(x−λ−βj

σ/
√
n

), if x < 0

Hence β̂j(λ) is a biased estimator for βj since E(β̂j(λ)) 6= βj, unless βj = 0.

In the adaptive LASSO paper Zou, 2006, the authors consider the lasso estimates,

β̂(n)

β̂(n)(λ) = arg min
β
‖Y −Xβ‖2

2 + λn ‖β‖1 (2.11)

where λn varies with n. In their lemma 1, they proved if λn/n → λ0 ≥ 0, then

β̂(n) →p arg min V1 where

V1(u) = (u− β∗)T C (u− β∗) + λ0 ‖u‖1 , (2.12)

β∗ is the true regression coefficients and 1
n
XTX→ C.
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Inspired by V1u, we denote the following the sample path:

β̂(λ) = arg min
β

1
n
‖Y −Xβ‖2

2 + λ ‖β‖1 ,

And for each λ in the sample path, we denote the following the population path:

β̃(λ) = arg min
β

1
n

(β − β∗)TXTX(β − β∗) + λ ‖β‖1 .

We consider a simple model

Y = Zβ + ε,

where β ∈ R and ε ∼ N (0, σ2). Suppose we have data (zi, yi), i = 1, . . . , n, we want

to solve

minimize
β

{
1
n

n∑
i=1

(yi − ziβ)2 + λ|β|
}
.

It can be shown the sample path β̂(λ) = Sλ(β̂LS), where β̂LS is the least square

estimator. And for the population path, we need to solve

minimize
β

{
1
n

n∑
i=1

(ziβ∗ − ziβ)2 + λ|β|
}
.

We can also show the population path β̃(λ) = Sλ (β∗), and hence

√
n{β̂(λ)− β̃(λ)} =

√
n{Sλ(β̂LS)− Sλ(β∗)}.

Hence if β∗ 6= 0, for λ < |β̂LS|, we have

√
n{Sλ(β̂LS)− Sλ(β∗)} →d N (0, σ2).

This means the LASSO estimator is consistent. For orthogonal design case, the proof

is similar.

And our Tj(1) = 1
2 |β̂

LS
j |2 and the population version T̃j(1) = 1

2 |β̂
∗
j |2. Hence

√
n{Tj(1) − T̃j(1)} has asymptotic Normal distribution. This shows although the

LASSO estimator β̂(λ) may not have asymptotic Normal distribution for all λ and

its consistency depends on λ. After integrating λ out, we may have a consistent

estimator back. Extensions to more general settings still worth our investigation.
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2.3 Extension to more general problems

We consider testing more general hypothesis of the form H0: Dβ = d vs H1: Dβ 6= d,

where D is a m×p matrix with rank(D) = m. We will restrict m < p since otherwise

the null hypothesis reduces to a null hypothesis of the form in Section 2.2. To test

Dβ = d, we borrow some ideas from the generalized LASSO Tibshirani, Taylor, et al.,

2011 and describe as follows.

First, we augment the matrix D to be a full rank p × p matrix D̃ =

 D

I

, and

we define the vector d̃ =

 d

0

. Then we let θ = (θ1, θ2)T = D̃β− d̃. So we can solve

β = D̃−1(θ + d̃). And then we can follow 2.2 and compare the full solution path

θ̂ := θ̂(λ) = argmin
θ∈Rp

L(Y,XD̃−1(θ + d)) + λJ(θ),

with the constrained solution path

θ̂0 := θ̂0(λ) = argmin
θ∈Rp,θ1=0

L(Y,XD̃−1(θ + d)) + λJ(θ).

A simple example would be testing H0: β1 = β2 vs H1: β1 6= β2 in the linear

regression model Y = Xβ + ε. In that case, D = (1,−1) and d = 0. The augmented

D̃ and D̃−1 are



1 −1 · · · 0

0 1 · · · 0
... ... . . . ...

0 0 · · · 1


and



1 1 · · · 0

0 1 · · · 0
... ... . . . ...

0 0 · · · 1


, respectively.

Hence, after transformation, the new design matrix XD̃−1 is basically (X1, X1 +

X2, X3, . . . , Xp). And for the transformed regression Y = XD̃−1θ + ε, we can easily

test θ1 = 0 using the methodology discussed in Section 2.2.
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2.4 Simulation studies

We now study via simulation the effectiveness of the LOCO path statistic as a variable

screening tool in GLM as well as the properties of our proposed LOCO-path-based

tests of hypotheses which use the parametric bootstrap to estimate the null distribu-

tions of the test statistics. We first present the variable screening results.

Variable screening

We study the performance of the our variable screening procedure described in Section

2.2 by generating data from the Logistic regression model

E(Y |X) = µ(βX1 + βX2 + βX3),

where µ(x) = exp(x)/(1 + exp(x)), with a total of p predictors X1, . . . , Xp in the

model. The settings are similar to those considered in Chapter 1. The rows of

the design matrix are generated as independent multivariate normal random vectors

with covariance matrix Σ = (ρ|i−j|)1≤i,j≤p, where ρ = 0, 0.1, 0.5 and 0.9. Models with

β = 1, 2, 3, p = 100, n = 20, and p = 1000, n = 50 are considered. To compare our

results with SIS and ISIS, we utilized the R package SIS Saldana and Feng, 2018.

We simulated 200 data sets and for each model we calculate Tj(1, 1) and Tj(2, 2)

for j = 1, 2, . . . , p and select the top n − 1 covariates, selecting the same number of

covariates with SIS and ISIS in order to make a fair comparison. For our method, we

utilized the R package glmnet Friedman et al., 2010 to calculate our test statistic.

In Table 2.1 we show the proportion of times that the true model is contained

in the set of selected covariates by our method and by the SIS and ISIS variable

screening methods. In most cases, the model selected by our LOCO-path-based

method contains the true model with greater frequency than that of the SIS and ISIS

methods. On the other hand, the success of ISIS depends on the appropriate selection

of tuning parameters.
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Table 2.1: Proportion of times SIS, ISIS and our method selected a set of covariates
containing {X1, X2, X3} for Logistic regression model.

Setting β Tj(1, 1) Tj(2, 2) SIS ISIS
p = 1000, n = 50,Σ = Ip 1 0.705 0.705 0.235 0.105

2 0.945 0.945 0.640 0.420
3 0.975 0.975 0.785 0.645

p = 1000, n = 50,Σ = (0.1|i−j|)1≤i,j≤p 1 0.780 0.775 0.455 0.210
2 0.960 0.960 0.770 0.495
3 0.980 0.980 0.825 0.570

p = 1000, n = 50,Σ = (0.5|i−j|)1≤i,j≤p 1 0.930 0.930 0.850 0.225
2 1.000 1.000 1.000 0.390
3 1.000 1.000 1.000 0.400

p = 1000, n = 50,Σ = (0.9|i−j|)1≤i,j≤p 1 0.870 0.870 1.000 0.160
2 0.980 0.980 1.000 0.245
3 1.000 1.000 1.000 0.250

p = 100, n = 20,Σ = Ip 1 0.675 0.675 0.140 0.115
2 0.870 0.870 0.295 0.265
3 0.900 0.900 0.365 0.285

p = 100, n = 20,Σ = (0.1|i−j|)1≤i,j≤p 1 0.785 0.785 0.215 0.150
2 0.895 0.895 0.365 0.280
3 0.915 0.910 0.525 0.380

p = 100, n = 20,Σ = (0.5|i−j|)1≤i,j≤p 1 0.865 0.860 0.570 0.280
2 0.965 0.960 0.850 0.500
3 0.985 0.985 0.890 0.490

p = 100, n = 20,Σ = (0.9|i−j|)1≤i,j≤p 1 0.900 0.895 0.970 0.355
2 0.975 0.975 1.000 0.345
3 0.990 0.990 1.000 0.425

Study of power and size of LOCO path tests of hypotheses

Test involving a single coefficient

We first study the size and power of the LOCO path test for testing the hypotheses

H0: βj = 0 versusH1: βj 6= 0 for some j ∈ {1, . . . , p}, where the rejection region of the

test is calibrated using the parametric bootstrap procedure described in Section 2.2.

We consider the test statistics Tj(1, 1), Tj(2, 2), and Tj(∞,∞). In high-dimensional

(p ≥ n) settings, we compare the empirical size and power of our test based on these

statistics with the test based on the desparsified LASSO estimator Geer et al., 2014.
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We use the R package hdi Dezeure et al., 2015a to obtain the P-value based on the

desparsified LASSO estimator using default settings Dezeure et al., 2015b for Logistic

regression. Poisson regression is not available for hdi. And we utilize the R package

glmnet Friedman et al., 2010 to implement our method. In low-dimensional (p < n)

settings, we compare the performance of our tests to that of the Wald type test.

We generate data from the logistic regression and Poisson regression models with

E(Y |X) = µ(Xβ),

where µ(x) = exp(x)/(1+exp(x)) for logistic regression and µ(x) = exp(x) for Poisson

regression. We consider p = 80 and p = 1000. For p = 1000, we set β = (β1, . . . , βp)T

such that β2 = · · · = β10 = 1, β11 = · · · = β1000 = 0 for logistic regression, β2 =

β3 = 1, β4 = · · · = β1000 = 0 for Poisson regression. For p = 80, we set β2 = β3 = 3,

β4 = · · · = β80 = 0 for logistic regression and β2 = β3 = 1, β4 = · · · = β80 = 0

for Poisson regression. To simulate the power curve, we take different values of

β1 ∈ {0/10, 5/10, . . . , 5} for Logistic regression and β1 ∈ {0/50, 1/50, . . . , 10/50} for

Poisson regression . Each row of X is generated independently from the multivariate

normal distributionN (0,Σ), where we consider different choices of the p×p covariance

matrix Σ. For each choice of Σ and for each value of β1, we generate N = 500 data

sets and with each data set we test H0: β1 = 0 versus H1: β1 6= 0. For each data set,

we draw B = 500 bootstrap samples to estimate the null distribution. We record the

proportion of rejections of H0 at the α = 0.05 significance level.

The empirical size of the simulation for Logistic regression testing H0: β1 = 0

under p = 1000 and p = 80, is given in Table 2.2 and 2.4. We also recorded the

empirical size of the test based on the desparsified LASSO estimator. For p = 1000,

our method tends to be too conservative for some designs. However, the size of

desparsified LASSO estimator is even worse. For p = 80, the size of our method is

well-controlled, while the desparsified LASSO estimator is too conservative.
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The empirical size of the simulation for Poisson regression testing H0: β1 = 0

under p = 1000 and p = 80, is given in Table 2.3 and 2.5. The hdi package only

supports linear and Logistic regression currently so we did not show the desparsified

LASSO results. It is clear that our method nicely controlled the size under different

choices of Σ and different quantities T1(1, 1), T1(2, 2) and T1(∞,∞).

The Logistic regression empirical power curves of our test based on the LOCO path

statistics T1(1, 1), T1(2, 2) and T1(∞,∞) as well as of the test based on the desparsified

LASSO under settings n = 1000 and p = 80 over the values β1 ∈ {0/50, 5/10, . . . , 5}

are depicted in Figures 2.1 and 2.3. For most cases, T1(1, 1) and T1(2, 2) have a higher

power than T1(∞,∞), while T1(∞,∞) loses some power under the correlated design.

For p = 1000, under different designs, our method outperformed desparsified LASSO

and our method achieves higher power than desparsified LASSO as the correlation

increases. For p = 80, our method achieves comparable power with desparsified

LASSO as the correlation increases. We also noticed that for p = 80, the desparsified

LASSO may fail, although the frequency is very rare (3-5 out of 500 simulations).

It is also interesting to note that we cannot do Wald-type test even for some lower-

dimensional case (n = 100, p = 80). The maximum likelihood estimator is undefined

with very high probability due to complete or quasi-complete separation.

Overall, for the Logistic regression, our methods achieves comparable or higher

power, with size better controlled, compared to the desparsified LASSO method.

The Poisson regression empirical power curves of our test based on the LOCO

path statistics T1(1, 1), T1(2, 2) and T1(∞,∞) under settings n = 1000 and p = 80

over the values β1 ∈ {0/10, 1/50, . . . , 10/50} are depicted in Figures 2.2 and 2.4. For

p = 80, we also included the power curves using the Wald-type test. For most cases,

T1(1, 1) and T1(2, 2) have comparable and highest power, while T1(∞,∞) loses some

power under the correlated design. For p = 80, our method achieves significantly

higher power than the Wald-type test as the correlation increases.
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Table 2.2: Logistic regression empirical size for testing H0: β1 = 0 under different
correlation design with n = 100, p = 1000.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.076 0.062 0.038 0.008

T1(2, 2) 0.082 0.060 0.038 0.014
T1(∞,∞) 0.054 0.046 0.026 0.006
De-sparsified 0.128 0.068 0.030 0.004

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.082 0.048 0.022 0.006
T1(2, 2) 0.096 0.056 0.030 0.014
T1(∞,∞) 0.132 0.070 0.036 0.010
De-sparsified 0.032 0.016 0.008 0.000

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.198 0.112 0.068 0.040
T1(2, 2) 0.240 0.136 0.084 0.026
T1(∞,∞) 0.232 0.154 0.086 0.036
De-sparsified 0.078 0.038 0.016 0.006

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.038 0.018 0.008 0.002
T1(2, 2) 0.048 0.028 0.016 0.004
T1(∞,∞) 0.038 0.012 0.002 0.000
De-sparsified 0.018 0.006 0.000 0.000

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.062 0.036 0.016 0.000
T1(2, 2) 0.082 0.032 0.016 0.006
T1(∞,∞) 0.054 0.020 0.006 0.002
De-sparsified 0.034 0.008 0.006 0.000

Table 2.3: Poisson regression empirical size for testing H0: β1 = 0 under different
correlation design with n = 100, p = 1000.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.182 0.106 0.058 0.022

T1(2, 2) 0.198 0.096 0.050 0.008
T1(∞,∞) 0.188 0.088 0.038 0.006

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.194 0.102 0.054 0.010
T1(2, 2) 0.248 0.108 0.048 0.010
T1(∞,∞) 0.242 0.124 0.062 0.020

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.264 0.148 0.066 0.022
T1(2, 2) 0.266 0.174 0.120 0.048
T1(∞,∞) 0.246 0.146 0.084 0.036

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.200 0.096 0.050 0.010
T1(2, 2) 0.184 0.076 0.038 0.016
T1(∞,∞) 0.192 0.102 0.062 0.006

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.186 0.096 0.066 0.014
T1(2, 2) 0.180 0.096 0.056 0.008
T1(∞,∞) 0.152 0.076 0.038 0.010
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Table 2.4: Logistic regression empirical size for testing H0: β1 = 0 under different
correlation design with n = 100, p = 80.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.200 0.104 0.056 0.018

T1(2, 2) 0.190 0.088 0.060 0.026
T1(∞,∞) 0.208 0.110 0.066 0.032
De-sparsified 0.090 0.032 0.014 0.000

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.188 0.100 0.054 0.020
T1(2, 2) 0.184 0.086 0.050 0.016
T1(∞,∞) 0.220 0.112 0.062 0.026
De-sparsified 0.120 0.058 0.020 0.002

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.200 0.118 0.078 0.040
T1(2, 2) 0.190 0.118 0.066 0.024
T1(∞,∞) 0.216 0.124 0.084 0.028
De-sparsified 0.187 0.089 0.050 0.012

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.166 0.080 0.038 0.012
T1(2, 2) 0.166 0.086 0.044 0.016
T1(∞,∞) 0.154 0.072 0.032 0.006
De-sparsified 0.102 0.042 0.016 0.002

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.144 0.084 0.050 0.008
T1(2, 2) 0.176 0.082 0.032 0.010
T1(∞,∞) 0.204 0.082 0.036 0.010
De-sparsified 0.145 0.050 0.024 0.006
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Table 2.5: Poisson regression empirical size for testing H0: β1 = 0 under different
correlation design with n = 100, p = 80.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.188 0.088 0.044 0.002

T1(2, 2) 0.188 0.110 0.056 0.008
T1(∞,∞) 0.198 0.096 0.048 0.004
Wald 0.126 0.058 0.026 0.002

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.212 0.108 0.060 0.010
T1(2, 2) 0.186 0.090 0.046 0.018
T1(∞,∞) 0.210 0.104 0.044 0.010
Wald 0.068 0.036 0.010 0.000

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.218 0.098 0.058 0.018
T1(2, 2) 0.230 0.098 0.048 0.018
T1(∞,∞) 0.162 0.064 0.030 0.008
Wald 0.040 0.016 0.006 0.000

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.180 0.090 0.050 0.024
T1(2, 2) 0.218 0.090 0.044 0.018
T1(∞,∞) 0.206 0.108 0.056 0.012
Wald 0.084 0.046 0.020 0.000

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.162 0.076 0.026 0.010
T1(2, 2) 0.210 0.118 0.062 0.010
T1(∞,∞) 0.210 0.126 0.078 0.022
Wald 0.072 0.026 0.004 0.000
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Figure 2.1: Logistic regression empirical power for testing H0: β1 = 0 vs H1:
β1 6= 0 under different correlation design with n = 100, p = 1000 (from top to
bottom: Σ = Ip, Σ = (0.5|i−j|)1≤i,j≤p, and Σ = (0.9|i−j|)1≤i,j≤p).
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Figure 2.2: Poisson regression empirical power for testing H0: β1 = 0 vs H1: β1 6= 0
under different correlation design with n = 100, p = 1000 (from top to bottom:
Σ = Ip, Σ = (0.5|i−j|)1≤i,j≤p, and Σ = (0.9|i−j|)1≤i,j≤p).
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Figure 2.3: Logistic regression empirical power for testing H0: β1 = 0 vs H1: β1 6= 0
under different correlation design with n = 100, p = 80 (from top to bottom: Σ = Ip,
Σ = (0.5|i−j|)1≤i,j≤p, and Σ = (0.9|i−j|)1≤i,j≤p).
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Figure 2.4: Poisson regression empirical power for testing H0: β1 = 0 vs H1: β1 6= 0
under different correlation design with n = 100, p = 80 (from top to bottom: Σ = Ip,
Σ = (0.5|i−j|)1≤i,j≤p, and Σ = (0.9|i−j|)1≤i,j≤p).

Test involving multiple coefficients

We generate data from similar model as in Section 2.4, with

E(Y |X) = µ(Xβ),
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with n = 100 and β = (β1, . . . , βp)T . For p = 1000, we set β2 = · · · = β10 = 1,

β11 = · · · = β1000 = 0 for Logistic regression, β2 = β3 = 1, β4 = · · · = β1000 = 0 for

Poisson regression. For p = 80, we set β2 = β3 = 3, β4 = · · · = β80 = 0 for Logistic

regression and β2 = β3 = 1, β4 = · · · = β80 = 0 for Poisson regression. To simulate

the power curve, we take different values of β1 ∈ {10/10, 15/10, . . . , 6} for Logistic

regression and β1 ∈ {10/10, 11/10, . . . , 2} for Poisson regression .

For p = 1000, We will test

H0: β1 = 1, β11 = 0, β12 = 0 vs H1: β1 6= 1 or β11 6= 0 or β12 6= 0.

and for p = 80, we will test

H0: β1 = 1, β4 = 0, β5 = 0 vs H1: β1 6= 1 or β4 6= 0 or β5 6= 0.

Other settings remain the same as Section 2.4.

The empirical size of the simulation for Logistic and Poisson regression with p =

1000 is given in Table 2.6 and 2.7 under different choices of Σ. We will see the size is

well controlled under different designs.

For the p = 1000 case, Figure 2.5 and 2.6 shows the power curves of the tests under

different choices of Σ for Logistic regression and Poisson regression, respectively. The

size is well controlled when H0 is true, and T1(1, 1), T1(2, 2) and T1(∞,∞) achieves

similar power.

For the p = 80 case, Figure 2.7 and 2.8 shows the power curves of the tests under

different choices of Σ for both Logistic regression and Poisson regression. The size

is well controlled and T1(1, 1) and T1(2, 2) achieves higher power than T1(∞,∞) as

correlation increases.
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Table 2.6: Logistic regression empirical size for simultaneous testing under different
correlation design with n = 100, p = 1000.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.158 0.098 0.068 0.016

T1(2, 2) 0.174 0.088 0.042 0.010
T1(∞,∞) 0.168 0.090 0.038 0.014

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.172 0.102 0.056 0.020
T1(2, 2) 0.144 0.072 0.052 0.022
T1(∞,∞) 0.148 0.076 0.042 0.012

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.236 0.176 0.118 0.050
T1(2, 2) 0.264 0.172 0.126 0.062
T1(∞,∞) 0.240 0.126 0.078 0.028

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.088 0.042 0.018 0.008
T1(2, 2) 0.088 0.042 0.020 0.008
T1(∞,∞) 0.086 0.036 0.014 0.008

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.090 0.038 0.024 0.008
T1(2, 2) 0.112 0.048 0.016 0.002
T1(∞,∞) 0.096 0.048 0.024 0.006

Table 2.7: Poisson regression empirical size for simultaneous testing under different
correlation design with n = 100, p = 1000.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.182 0.106 0.058 0.022

T1(2, 2) 0.198 0.096 0.050 0.008
T1(∞,∞) 0.188 0.088 0.038 0.006

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.194 0.102 0.054 0.010
T1(2, 2) 0.248 0.108 0.048 0.010
T1(∞,∞) 0.242 0.124 0.062 0.020

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.264 0.148 0.066 0.022
T1(2, 2) 0.266 0.174 0.120 0.048
T1(∞,∞) 0.246 0.146 0.084 0.036

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.200 0.096 0.050 0.010
T1(2, 2) 0.184 0.076 0.038 0.016
T1(∞,∞) 0.192 0.102 0.062 0.006

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.186 0.096 0.066 0.014
T1(2, 2) 0.180 0.096 0.056 0.008
T1(∞,∞) 0.152 0.076 0.038 0.010
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Figure 2.5: Logistic regression empirical power simultaneous testing under different
correlation design with n = 100, p = 1000 (from top to bottom: Σ = Ip, Σ =
(0.5|i−j|)1≤i,j≤p, and Σ = (0.9|i−j|)1≤i,j≤p).
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Figure 2.6: Poisson regression empirical power simultaneous testing under different
correlation design with n = 100, p = 1000 (from top to bottom: Σ = Ip, Σ =
(0.5|i−j|)1≤i,j≤p, and Σ = (0.9|i−j|)1≤i,j≤p).
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Figure 2.7: Logistic regression empirical power simultaneous testing under dif-
ferent correlation design with n = 100, p = 80 (from top to bottom: Σ = Ip,
Σ = (0.5|i−j|)1≤i,j≤p, and Σ = (0.9|i−j|)1≤i,j≤p).
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Figure 2.8: Poisson regression empirical power simultaneous testing under dif-
ferent correlation design with n = 100, p = 80 (from top to bottom: Σ = Ip,
Σ = (0.5|i−j|)1≤i,j≤p, and Σ = (0.9|i−j|)1≤i,j≤p).
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More general test

In this section, we will consider testing H0: β1 = β2 vs H1: β1 6= β2 as discussed in

Section 2.4. For simplicity, we generate data from the linear regression model

Y = Xβ + ε,

where ε ∼ N (0, In) with n = 100 and β = (β1, . . . , βp)T . For p = 1000, we set

β2 = · · · = β11 = 1, β12 = · · · = β1000 = 0, and β1 ∈ {1, 11/10, . . . , 2}. For p = 80, we

set β2 = β3 = β4 = 1. Other simulation settings remain the same as in section 2.4.

We utilized R package lars Hastie and Efron, 2013 to implement our method, as it

allows for exact computation of the test statistic, due to piecewise linearity of the

LASSO path in the continuous response linear model. We compare it to the classical

t-test in lower-dimensional settings.

The empirical size of the simulation for H0: β1 = β2 under p = 1000, is given in

Table 2.8 under different choices of Σ. It is clear that our method nicely controlled

the size under different choices of Σ and different quantities T1(1, 1), T1(2, 2) and

T1(∞,∞).

The empirical power curves of our test based on the LOCO path statistics T1(1, 1),

T1(2, 2) and T1(∞,∞) under settings n = 1000 and p = 80 over the values β1 ∈

{0/10, 1/10, . . . , 1} are depicted in Figures 2.9 and 2.10. For p = 80, we compared it

to the classical T-test. For most cases, T1(1, 1) and T1(2, 2) have the highest power,

while T1(∞,∞) loses a lot of power under the correlated design. Our method achieved

much greater power than the T-test under different designs.
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Table 2.8: Empirical power for testing β1 = β2 under different correlation design
with n = 100, p = 1000.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.224 0.126 0.064 0.010

T1(2, 2) 0.192 0.110 0.060 0.014
T1(∞,∞) 0.216 0.114 0.062 0.020

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.242 0.114 0.052 0.012
T1(2, 2) 0.196 0.082 0.042 0.016
T1(∞,∞) 0.184 0.098 0.052 0.008

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.146 0.076 0.042 0.014
T1(2, 2) 0.172 0.086 0.048 0.016
T1(∞,∞) 0.206 0.094 0.042 0.014

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.150 0.078 0.036 0.010
T1(2, 2) 0.176 0.082 0.042 0.008
T1(∞,∞) 0.142 0.076 0.042 0.012

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.132 0.062 0.036 0.022
T1(2, 2) 0.130 0.076 0.052 0.028
T1(∞,∞) 0.134 0.082 0.058 0.028
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Figure 2.9: Empirical power for testing β1 = β2 under different correlation design
with n = 100, p = 1000 (from top to bottom: Σ = Ip, Σ = (0.5|i−j|)1≤i,j≤p, and
Σ = (0.9|i−j|)1≤i,j≤p).
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Figure 2.10: Empirical power for testing β1 = β2 under different correlation design
with n = 100, p = 80 (from top to bottom: Σ = Ip, Σ = (0.5|i−j|)1≤i,j≤p, and
Σ = (0.9|i−j|)1≤i,j≤p).

2.5 Real data analysis

To present some applications of our method, we consider several publicly available

datasets and explored whether our method could find some important genes. We will
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first do variable screening and apply our inference procedure afterwards. We will also

apply desparsified LASSO on these datasets for comparison.

Leukemia: The Leukemia dataset Golub et al., 1999 was obtained from Affymetrix

oligonucleotide microarrays, which measured gene expression levels for n = 72 pa-

tients. Each patients are either suffering from acute lymphoblastic leukemia(ALL) or

acute myeloid leukemia (AML). This dataset does not have a control group, just two

type of patient samples. And we have p = 7129 genes measurements for each patient.

Prostate: The Prostate tumor dataset Singh et al., 2002 measured gene expres-

sion levels for n = 102 patients who are suffering from prostatectomy. Sample of

each patients are either classified as normal or tumor. And we have p = 12600 genes

measurements for each patient.

Colon: The Colon cancer dataset Alon et al., 1999 collected, measured and se-

lected p = 2000 gene expression levels for 40 tumor and 22 normal colon tissues(n =

62).

Lymphoma: This dataset Dudoit et al., 2002 measured genes expression levels

for n = 62 samples and yield p = 4026 gene expressions. Among these 62 samples,

we have 42 samples of diffuse large B-cell lymphoma, 9 samples of follicular lym-

phoma and 11 samples of chronic lymphocytic leukemia. This dataset does not have

a control group as well, just three type of patient samples. And we merged follicular

lymphoma and chronic lymphocytic leukemia as one category to make this dataset

more balanced.

All these datasets were normalized on the log scale. We use T (1, 1) in this part

and obtained bootstrap P-values for each gene after variable screening. The variable

screening procedure reduced the dimension of dataset from 7129 to 41 from Leukemia

dataset.

For Leukemia dataset, Colon dataset and Lymphoma dataset, neither our method

nor the desparsified LASSO found any significant genes. For the Prostate datasets,
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our method found X83543 and X07732 significant with P-value 0.0014 and P-value

< 0.0001 while the desparsified LASSO only found X07732 with P-value 0.003. And

we found X07732 is an external transcribed spacer, a type of non-coding mRNA. And

X83543 corresponds to APXL gene for human being.

2.6 Discussion

We extend the LOCO path statistic to generalized linear models and more general

hypothesis testing scenario. For variable screening, our method does not require the

selection of tuning parameters and can achieve a greater probability of selecting a set

of covariates that contains the true model than both SIS and ISIS.

For statistical inference, our method provides reliable P-values in both high and

lower-dimensional settings. Overall, the proposed bootstrap method controls the size

and in some cases achieves higher power than the desparsified LASSO Geer et al.,

2014. Moreover, our method can be used to test hypothesis simultaneously involving

multiple coefficients.

We use simulated results to show the effectiveness of our method. We also proved

the effectiveness of our method under some simple settings. Rigorous proof of the

consistency of our bootstrap procedure requires deep understanding of the behavior

of the solution path in both lower and high-dimensional case, which is worth our

future investigation.
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Chapter 3

Extensions of the Leave-One-Covariate-Out

solution path statistic to sparse Gaussian

graphical models

3.1 Introduction

We consider Gaussian graphical models, under which

x(1), . . . ,x(n) i. i. d ∼ N (0,Σ),

where x(i) ∈ Rp, i ∈ 1, . . . , n. If Σ is non-singular, an interesting descriptor of the

p-dimensional Gaussian distribution is a graph with p nodes and a set of undirected

edges, connecting pairs of variables with non-zero conditional covariates, after ac-

counting for the effects of the remaining variables.

Between any two different nodes j and k, there is an undirected edge if and only

if Σ−1
jk 6= 0. An interpretation is that: x(j) and x(k) are conditionally dependent

given all other variables x(i),i 6=j,k if and only if Σ−1
jk 6= 0. Hence, it is of interest to

estimate Σ−1, which is also known as the precision matrix, if we want to learn the

graphical structure of these p nodes. This can also be viewed as model selection

in Gaussian graphical models or covariance selection Dempster, 1972. Forward or

backward stepwise selection are considered standard methods for covariance selection

Yuan and Lin, 2007. However, these methods suffer from computational issues and fail

to adjust for multiple comparisons Edwards, 2012. The problem especially challenging

in the high-dimensional case p > n.
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For high-dimensional linear regression, LASSO Tibshirani, 1996 and other LASSO

based regularization techniques Zou and Hastie, 2005, Zou, 2006 have proved to be

successful in variable selection. The graphical LASSO introduced regularization to

the graphical models and maximized the penalized log-likelihood

log det Θ− tr(SΘ)− ρ‖Θ‖1,

where ‖Θ‖1 = ∑
i,j |Θij|. It was first proposed by Meinshausen, Bühlmann, et al.

Meinshausen, Bühlmann, et al., 2006, which uses neighborhood selection for each

node. Different algorithms Banerjee et al., 2008, Yuan and Lin, 2007 are proposed

by solving the dual problem of the graphical LASSO. The glasso algorithm Friedman

et al., 2008 borrowed from Yuan and Lin, 2007 and Banerjee et al., 2008 proposed

to use a block coordinate descent algorithm, which is very efficient in solving the

graphical LASSO problem. Others proposed modifications to glasso Mazumder and

Hastie, 2012a Mazumder and Hastie, 2012b to address the convergence issues and

improve its performance in large-scale networks. Guo et al. Guo et al., 2011 further

extended to joint estimation of multiple graphical models.

However, there is not very much work focusing on the information contained in the

LASSO solution path for graphical models. The Leave-One-Covariate-Out(LOCO)

solution path was proposed to provide variable importance measurement and statis-

tical inference for linear and generalized linear models. The LOCO solution path

considers measuring the change in LASSO solution path due to removal of one co-

variate from the model. LOCO path compares the full solution path

β̂ := β̂(λ) = argmin
β∈Rp

L(Y,Xβ) + λJ(β), λ > 0

to the LOCO solution path, given by

β̂(−j) := β̂(−j)(λ) = argmin
β∈Rp,βj=0

L(Y,Xβ) + λJ(β), λ > 0,

where L(Y,Xβ) is a loss function and J(β) is a penalty function. The LOCO solution

path is the regularization soluton path when covariate Xj is removed. For non-
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zero coefficients its importance will be reflected by a large difference between two

paths. Bootstrap procedures are provided for statistical inference. In this paper,

we further extend the Leave-One-Covariate-Out solution path to graphical LASSO

estimators in order to measure the importance of an edge in the graph by comparing

the glasso solution path to a glasso solution path in which that edge is not allowed

to enter the path. This paper is organized as follows: Section 3.2 defines the LOCO

path statistic for graphical models and Section 3.3 presents simulation results and

Section 3.4 provides some real data examples. Section 3.5 presents some additional

discussions. Section 3.6 provides additional discussion.

3.2 Methodology

We first review the glasso algorithm. Suppose we have n i.i.d. samples x(1), . . . ,x(n) ∼

N (0,Σ), where x(i) ∈ Rp, i ∈ 1, . . . , n. Let Θ = Σ−1 and let S be the empirical

covariance matrix. To estimate the inverse covariance matrix, we want to maximize

the penalized log-likelihood

Θ̂ = argmax
Θ�0

{log det Θ− tr(SΘ)− ρ‖Θ‖1} . (3.1)

The glasso algorithm Friedman et al., 2008 is proposed to maximize (3.1) by

iteratively solving a LASSO problem Banerjee et al., 2008

arg max
β

{1
2
∥∥∥W 1/2

11 β − b
∥∥∥2

+ ρ‖β‖1

}
, (3.2)

where b = W
−1/2
11 s12, W is the current estimate of Σ, and W11 and s12 are obtained

by partitioning W and S as

W =

 W11 w12

wT12 w22

 , S =

 S11 s12

sT12 s22

 .
The value w12 = W11β gives the solution for w12. This means we can solve (3.1) in

the manner of a block coordinate descent algorithm.
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Now we put it under the framework of the Leave-One-Covariate-Out solution path.

The graphical LASSO estimator (3.1) can be viewed as mapping from (0,∞) to the

space of positive definite matrices. But in this case, since the matrix is symmetric, we

can restrict our attention to the upper triangle of Θ, which measures the correlation

between different variables. To measure the importance of the edge corresponding to

Θkl, we consider the solution path for the upper triangle entry

Θ̂ij,i<j = argmax
Θ�0

{log det Θ− tr(SΘ)− ρ‖Θ‖1} . (3.3)

For the LOCO path, we consider the constrained solution path

Θ̂−(k,l)
ij,i<j = argmax

Θ�0,Θkl=0
{log det Θ− tr(SΘ)− ρ‖Θ‖1} , (3.4)

in which the edge connecting variables k and l is never allowed to enter.

To solve the constrained optimization problem, we propose a simple modification

of (3.4), by imposing an infinite penalty on Θkl and solving

Θ̂−(k,l)
ij,i<j = argmax

Θ�0

log det Θ− tr(SΘ)− ρ
∑

i 6=k,j 6=l
|Θij| − γ|Θkl|

 , (3.5)

where γ →∞. In practice, we can just fix γ to be some very large number.

And then we measure the change in the solution path due to imposing Θkl = 0

by computing

Tk,l(q) = ||Θ̂ij,i<j − Θ̂−(k,l)
ij,i<j ||q,q,

where for a function f : [0,∞)→ Rp with each entry fj : [0,∞)→ R, for j = 1, . . . , p,

‖f‖q,q =


(∑p

k=1
∫∞
0 |fk(λ)|qdλ)1/q, 0 < q <∞

max
1≤k≤p

sup
λ>0
|fk(λ)|, q =∞

.

Note this is the same quantity from Chapter 1.
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Variable screening for precision matrix

Our statistic Tk,l(q) serves as a variable importance measure for Θkl. We can further

use it for variable screening.

We first standardize Tk,l(q), k < l, k = 1, . . . , p and l = 2, . . . , p by setting

T̄k,l(q) = Tk,l(q)
∑
k<l

Tk,l(q)
−1

.

For variable screening, we set a threshold ε and only screen in entry kl if the

precision matrix T̄k,l(q) > ε. Or we can rank T̄k,l(q) and only screen the component

of Θ in the top K entries. In practice, ε can be the 95% quantile of T̄k,l(q) so you

only screen in 5% variables. And K can be 100 or depends on how many entries of

Θ we want to be non-zero.

Computational details

For linear regression models, the LASSO solution path is piecewise linear Rosset and

Zhu, 2007. For the graphical LASSO, the solution path is not piecewise linear. Hence

we cannot compute Tk,l(q) exactly. But we can approximate Tk,l(q) by specifying a

grid of λ.

To create the grid of λ, we construct a sequence of λ values decreasing from

some pre-determined λmax to λmin with λmax determined by maxi,j |S|, where S is the

sample covariance matrix Friedman et al., 2019. And λmin is determined by λmax/K,

where K is the length of the grid. In practice, we can use K = 50 and it usually

provides good approximation.

To solve (3.5), we utilized the R package glasso Friedman et al., 2019, which

allows the users to impose different penalties for each entry of Θ. We may not be

able to set γ =∞, but in practice settings we have found that setting γ = 104 usually

works well.
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Extension to covariance matrix estimator

We can also measuring the importance of some entry of Σ, the covariance matrix,

using the LOCO path idea. Although this may not be related to graphical models,

it is interesting to show the adeptness of our LOCO path idea.

Suppose we want to know whether some entry of Σkl = 0. Then we compare (3.3)

to the constrained solution path

Θ̂−(k,l)
ij,i<j = argmax

Θ�0,Σkl=0
{log det Θ− tr(SΘ)− ρ‖Θ‖1} . (3.6)

To solve (3.6), we propose a modified glasso algorithm. To measure the importance

of Σkl, we remove the corresponding rows and columns from W and S in the block

coordinate descent loop, if the loop updates Σ̂kl. And then we solve (3.2) and update

w12 = W11β. By doing so, we can continue updating the w12 entry of W and at the

same time, we can impose the constraint Σkl = 0 in the coordinate descent loop.

Here is the algorithm in detail:

1. Set W = S + ρI. The diagonal of W remains unchanged in what follows.

2. For each j = 1, 2, . . . p, 1, 2, . . . p, . . . , solve the lasso problem (3.2) which takes

as input the inner products W11 and s12. If a loop updates Σ̂kl, we remove the cor-

responding rows and columns from W11 and s12 . This gives a p − 2 vector solution

β̂−(kl). For the entries of β̂ which will update Σ̂kl, we will set it equal to 0. All other

entries we set as β̂ = β̂−(kl). Hence we have a p − 1 vector solution β̂. We then fill

in the corresponding row and column of W using w12 = W11β̂. By doing so, Wkl will

always be 0.

3. Continue until convergence.

And then we measure the change in the solution path

Tk,l(q) = ||Θ̂ij,i<j − Θ̂−(k,l)
ij,i<j ||q,

which will give us a measure of importance for Σkl.
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3.3 Simulation results

We now study via simulation the effectiveness of the LOCO path statistic as a tool

in recovering the dependence structure in Gaussian graphical models.

We generate data from the following model

x(1), . . . ,x(n) i. i. d ∼ N (0,Σ),

where p = 50 and n = 100 and 1000. We considered small p since large p will be

computationally expensive. We follow similar settings in Luo et al., 2014 and consider

two types of precision matrix, given as simulation A and simulation C in that paper.

The data generation procedure are the same as in Luo et al., 2014. We will calculate

T̄k,l(2) in the variable screening and keep all edges between variable pairs for which

T̄k,l(2) > ε, where we vary ε in order to produce an ROC curve. We compare our

procedure to the GRASS algorithm Luo et al., 2014. We simulate 250 datasets for

each model. And we will record the false positive rate and true positive rate among

250 simulations.

To generate the precision matrix, we consider two steps. First we generate two

types of edge set E . For random graph, we set (i, j) ∈ E with probability 0.01 for all

i < j. This corresponds to the simulation A in Luo et al., 2014. For a non-random

graph, we set (i, j) ∈ E for all |i − j| ≤ 2 and (i, j) /∈ E for all |i − j| > 2. And this

corresponds to the simulation C in Luo et al., 2014. In the second step, we generate

a p× p matrix A, where

Aij = Aji =


1 for i = j

Unif [−0.3, 0.7] for (i, j) ∈ E

0 otherwise

Then we create a positive definite matrix Σ−1 = A+(0.1− λmin(A)) I, where λmin(A)

gives the smallest eigenvalue of A.
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Figures 3.1 and 3.2 present ROC curves for our LOCO path procedure and the

GRASS algorithm under different settings with n = 100 and n = 1000. For n = 100,

the performance of our procedure and the GRASS is pretty similar, regardless of

different type of precision matrix. For n = 1000, our method has higher AUC than

the GRASS for precision matrix type A. And for type C, the performance between

them are also very close.

Figure 3.3 provides another example comparing glasso estimates to our LOCO

path statistic. And we consider Θ = Σ−1 as Θi,i+10 = s, Θi,i = 1. Our method

(without screening) captured all non-zero entries while the glasso marks irrelevant

entries as important.

For variable importance calculation of covariance matrix, we consider identical

settings except for the fact that we are estimating Σ now. Figure 3.4 provides an

example comparing our LOCO path statistic to true covariance matrix. Our method

(without screening) captured all non-zero entries of Σ.
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Figure 3.1: ROC curve comparison between LOCO path and GRASS for n = 100.
Left: simulation A. Right: simulation C.
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Figure 3.2: ROC curve comparison between LOCO path and GRASS for n = 1000.
Left: simulation A. Right: simulation C.

Truth glasso LOCO path

Figure 3.3: Comparison between the glasso estimates and our LOCO path statistic
for estimating precision matrix. Left: truth. Middle: glasso. Right: LOCO path
statistic.

3.4 Real data analysis

To further present the application of our method, we consider two publicly available

datasets and explored whether our method could find some interesting graphical

structure.

We consider the flow cytometry dataset Sachs et al., 2005 which was also analyzed

in Friedman et al., 2008. This dataset contains p = 11 proteins and n = 7466

cells. The results of applying our LOCO path statistic to this data set is shown in
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Truth LOCO path

Figure 3.4: LOCO path variable importance of covariance matrix, compared to the
truth. Left: truth. Right: LOCO path statistic.

Figure 3.5. We calculate T̄k,l(2) in the variable screening step and we considered 4

different screening threshold ε, which is determined by different quantiles of T̄k,l(2),

k = 1, . . . , 10, l = 2, . . . , 11 and k < l. Figure 3.6 shows the LOCO path statistic

calculated for all variable pairs. We will see only a few pairs have large variable

importance, while most variable pairs have variable importance close to 0.

We also consider the riboflavin dataset with 71 observations and 4088 variables,

which measures gene expression of Bacillus subtilis Bühlmann et al., 2014. And

as discussed in Bühlmann et al., 2014, we will also analyze a smaller version of

it (riboflavinV100), which only consider the top 100 genes with largest empirical

variance. For this dataset, We calculate T̄k,l(2) in the variable screening step and we

considered 4 different screening quantile q. Figure 3.7 shows the screening results.

There is some agreement between the graph for screening quantile q = 0.95 and the

graph presented in Bühlmann et al., 2014. Figure 3.8 shows the LOCO path statistic

calculated for the top 200 most important variable pairs.
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q=0.75 q=0.80 q=0.85 q=0.90

Figure 3.5: Flow cytometry dataset: undirected graph from LOCO path statistic
with different values of quantile q.
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Figure 3.6: Flow cytometry dataset: LOCO path statistic for all variable pairs.
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q=0.90 q=0.95 q=0.97 q=0.99

Figure 3.7: RiboflavinV100 dataset: undirected graph from LOCO path statistic
with different values of quantile q
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Figure 3.8: RiboflavinV100 dataset: LOCO path statistic for the top 200 variable
pairs.

3.5 Discussion

We extend the LOCO path statistic to Gaussian graphical models. For estimating

the sparse precision matrix, our method does not require the selection of tuning
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parameters and can achieve a greater probability of finding the true dependence

structure than the graphical lasso algorithm and the GRASS algorithm.

However, we only consider the calculation of variable importance measures using

the LOCO path idea. Valid statistical inference procedures should be considered for

our method. It may be interesting to test H0: Θij = 0 v.s H1: Θij 6= 0 where i 6= j.

Although it may be hard to provide solid theoretical justification, a well designed

bootstrap procedure is worth our further investigation.
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Appendix A

Chapter 2 Supplementary Materials

A.1 Exact computation of the LOCO path statistic

We use the fact that the LASSO solution path is piece-wise linear to simplify the

computation of the LOCO path statistic. Denote by λ1, . . . , λM the set of M knots

defines the pieces of a LASSO solution path. For two different LASSO solution paths,

the set of knots may be different. Suppose for path β̂ we have knots λ1 = {λ1,i, i =

1, 2, . . . ,M1} and for path β̂(−j) we have knots λ2 = {λ2,j, j = 1, 2, . . . ,M2}.

To calculate Tj(s, t), we need to take the union of λ1 and λ2 so that we have

λ = λ1 ∪ λ2. By focusing on small intervals (λm, λm+1], m = 1, . . . ,M − 1, we are

able to reduce the calculation of Tj(s, t) to the calculation of many simple integrals

between two straight lines. Hence the LOCO path statistics Tj(s, t), for s, t < ∞,

can be expressed as

Tj(s, t) =

 p∑
k=1

(
M−1∑
m=1

∫ λm+1

λm

|εk,m(λ)|sdλ
) t

s


1
t

, (A.1)

where

εk,m(λ) = (λ− λm)∆k,m+1 −∆k,m

λm+1 − λm
+ ∆k,m

where ∆k,m = β̂
(−j)
k (λm) − β̂k(λm) and ∆k,m+1 = β̂

(−j)
k (λm+1) − β̂k(λm+1), repre-

sent the difference between two straight lines. See Figure A.1 for a depiction of the

calculation of Tj(1, 1).

From here we just need to solve
∫ λm+1

λm

|εk,m(λ)|sdλ.
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If s <∞ is even, we have

∫ λm+1

λm

|εk,m(λ)|s dλ =
∣∣∣∣∣∆

s+1
k,m+1 −∆s+1

k,m

∆k,m+1 −∆k,m

∣∣∣∣∣ λm+1 − λm
s+ 1 , (A.2)

and if s <∞ is odd, we have

∫ λm+1

λm

|εk,m(λ)|s dλ =



∣∣∣∣∣∆
s+1
k,m+1 −∆s+1

k,m

∆k,m+1 −∆k,m

∣∣∣∣∣ λm+1 − λm
s+ 1 if ∆k,m+1∆k,m > 0∣∣∣∣∣∆

s+1
k,m+1 + ∆s+1

k,m

∆k,m+1 −∆k,m

∣∣∣∣∣ λm+1 − λm
s+ 1 if ∆k,m+1∆k,m < 0.

(A.3)

If s = ∞ or t = ∞, we just compute the maximum of |∆k,m| over all m =

1, 2, . . . ,M and k = 1, 2, . . . , p. Hence we can compute Tj(s, t) explicitly.

λm λm+1

∆k,m

∆k,m+1

Figure A.1: A detailed look at computing the LOCO path test statistic. Shaded
area represents

∫ λm+1
λm

|εk,m(λ)|sdλ with s = 1.

A.2 More simulation results

In Table A.1 - A.5 we show all the empirical size of our simulations. In Figure A.2 -

A.3 we show some extra empirical size and power curve simulations.

We generate data according to the model
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Y = Xβ + ε,

and consider three cases with n = 100, p = 12 and 100. We set β = (β1, . . . , βp)T

such that β2 = β3 = 1, β4 = · · · = βp = 0. Other settings are similar to what we

described in the Simulation section of our main paper. For p = 100, we compare our

method to the desparsified LASSO estimator and for p = 12, we compare it to the

T-test.

For p = 12, we achieved higher power compared to the T-test while having the

size well controlled. For p = 100, T1(1, 1) achieved comparable power compared to

the desparsified LASSO. Although T1(∞,∞) has lower power, but controls size better

than the desparsified LASSO.
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Figure A.2: Empirical power for testing H0: β1 = 0 vs H1: β1 6= 0 under different
correlation design with n = 100, p = 12.
Upper: Σ = Ip, middle: Σ = (0.5|i−j|)1≤i,j≤p, lower: Σ = (0.9|i−j|)1≤i,j≤p
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Figure A.3: Empirical power for testing H0: β1 = 0 vs H1: β1 6= 0 under different
correlation design with n = 100, p = 100.
Upper: Σ = Ip, middle: Σ = (0.5|i−j|)1≤i,j≤p, lower: Σ = (0.9|i−j|)1≤i,j≤p
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Table A.1: Empirical size of the test under different Σ with n = 100, p = 12.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.192 0.090 0.04 0.016

T1(2, 2) 0.240 0.118 0.068 0.020
T1(∞,∞) 0.212 0.114 0.066 0.014
T-test 0.194 0.096 0.042 0.008

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.224 0.110 0.060 0.016
T1(2, 2) 0.226 0.116 0.048 0.020
T1(∞,∞) 0.192 0.108 0.074 0.018
T-test 0.212 0.098 0.056 0.018

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.200 0.124 0.074 0.024
T1(2, 2) 0.216 0.120 0.082 0.034
T1(∞,∞) 0.236 0.132 0.076 0.018
T-test 0.186 0.096 0.050 0.012

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.220 0.101 0.060 0.010
T1(2, 2) 0.210 0.106 0.062 0.022
T1(∞,∞) 0.242 0.132 0.058 0.022
T-test 0.178 0.096 0.050 0.008

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.226 0.128 0.060 0.022
T1(2, 2) 0.204 0.116 0.062 0.016
T1(∞,∞) 0.218 0.096 0.058 0.028
T-test 0.212 0.102 0.050 0.010
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Table A.2: Empirical size of the test under different Σ with n = 100, p = 80.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.234 0.130 0.066 0.012

T1(2, 2) 0.230 0.110 0.058 0.016
T1(∞,∞) 0.214 0.086 0.040 0.010
T-test 0.196 0.104 0.038 0.020

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.228 0.102 0.060 0.018
T1(2, 2) 0.240 0.134 0.072 0.016
T1(∞,∞) 0.214 0.112 0.070 0.020
T-test 0.208 0.094 0.052 0.012

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.210 0.106 0.058 0.018
T1(2, 2) 0.210 0.116 0.058 0.024
T1(∞,∞) 0.192 0.106 0.068 0.018
T-test 0.206 0.092 0.052 0.012

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.218 0.110 0.064 0.018
T1(2, 2) 0.206 0.106 0.046 0.016
T1(∞,∞) 0.260 0.150 0.072 0.018
T-test 0.174 0.096 0.054 0.018

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.224 0.112 0.042 0.012
T1(2, 2) 0.228 0.124 0.068 0.016
T1(∞,∞) 0.220 0.114 0.058 0.014
T-test 0.212 0.112 0.048 0.006
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Table A.3: Multiple testing empirical size under different Σ with n = 100, p = 80.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.270 0.148 0.092 0.024

T1(2, 2) 0.236 0.13 0.068 0.012
T1(∞,∞) 0.232 0.142 0.088 0.018
F-test 0.204 0.084 0.036 0.004

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.230 0.122 0.064 0.014
T1(2, 2) 0.274 0.140 0.068 0.024
T1(∞,∞) 0.224 0.110 0.066 0.018
F-test 0.168 0.082 0.036 0.012

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.280 0.148 0.082 0.032
T1(2, 2) 0.240 0.148 0.090 0.032
T1(∞,∞) 0.240 0.116 0.064 0.016
F-test 0.200 0.100 0.038 0.008

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.242 0.118 0.052 0.010
T1(2, 2) 0.244 0.122 0.058 0.012
T1(∞,∞) 0.208 0.110 0.056 0.016
F-test 0.204 0.094 0.048 0.006

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.230 0.104 0.062 0.020
T1(2, 2) 0.216 0.102 0.054 0.018
T1(∞,∞) 0.272 0.156 0.088 0.026
F-test 0.202 0.088 0.034 0.014
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Table A.4: Empirical size of the test under different Σ with n = 100, p = 100.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.244 0.134 0.082 0.018

T1(2, 2) 0.192 0.102 0.046 0.012
T1(∞,∞) 0.236 0.122 0.070 0.024
Desparsified 0.194 0.102 0.046 0.010

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.252 0.118 0.052 0.022
T1(2, 2) 0.240 0.142 0.076 0.018
T1(∞,∞) 0.212 0.104 0.054 0.012
Desparsified 0.23 0.118 0.066 0.012

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.234 0.120 0.068 0.026
T1(2, 2) 0.214 0.124 0.066 0.014
T1(∞,∞) 0.220 0.120 0.068 0.014
Desparsified 0.234 0.120 0.060 0.016

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.256 0.138 0.072 0.014
T1(2, 2) 0.226 0.132 0.050 0.010
T1(∞,∞) 0.204 0.108 0.058 0.024
Desparsified 0.204 0.096 0.062 0.010

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.242 0.138 0.062 0.010
T1(2, 2) 0.224 0.124 0.064 0.024
T1(∞,∞) 0.214 0.116 0.050 0.010
Desparsified 0.174 0.090 0.052 0.018

Table A.5: Multiple testing empirical size under different Σ with n = 100, p = 1000.

Design Method α = 0.20 α = 0.10 α = 0.05 α = 0.01
Σ = Ip T1(1, 1) 0.208 0.130 0.070 0.018

T1(2, 2) 0.242 0.124 0.066 0.018
T1(∞,∞) 0.268 0.126 0.068 0.024

Σ = (0.5|i−j|)1≤i,j≤p T1(1, 1) 0.230 0.128 0.078 0.018
T1(2, 2) 0.184 0.100 0.056 0.018
T1(∞,∞) 0.186 0.100 0.050 0.014

Σ = (0.9|i−j|)1≤i,j≤p T1(1, 1) 0.210 0.134 0.076 0.020
T1(2, 2) 0.230 0.146 0.090 0.024
T1(∞,∞) 0.212 0.102 0.046 0.000

Σ = (0.51(i 6=j))1≤i,j≤p T1(1, 1) 0.184 0.102 0.058 0.012
T1(2, 2) 0.206 0.084 0.044 0.008
T1(∞,∞) 0.176 0.096 0.058 0.016

Σ = (0.81(i 6=j))1≤i,j≤p T1(1, 1) 0.214 0.142 0.098 0.042
T1(2, 2) 0.188 0.086 0.046 0.016
T1(∞,∞) 0.148 0.054 0.026 0.004
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